## **Review Questions -- Chapter 25**

- 1. For each of the following metal complexes, give the *oxidation state* of the metal and the *complete, systematic name* of the compound or ion.
  - (a) [Fe(CN)<sub>3</sub>(NH<sub>3</sub>)<sub>3</sub>] Fe<sup>2+</sup> triamminetricyanoferrate(II) ion
  - (b) [Cr(en)<sub>2</sub>Br<sub>2</sub>]<sub>2</sub>SO<sub>4</sub> Cr<sup>3+</sup> dibromobis(ethylenediamine)chromium(III) sulfate
- 2. Draw *clear, 3-dimensional structures* of all of the isomers, geometric and/or optical, of the following complex. Points will be deducted if the same structure is drawn more than once.



3. When an excess of ammonia (NH<sub>3</sub>) is added to aqueous solutions of each of the following metal ions, complexes having various coordination numbers and/or structures are produced. Write the *formula* for each metal-NH<sub>3</sub> complex and clearly draw it's *3- dimensional structure*.



4. For each of the following complexes, **A** and **B**, sketch a *properly-labeled d-orbital splitting diagram*. Then answer the questions below in a manner consistent with your diagrams.

A: 
$$[Mn(H_2O_6)]^{2+}$$
 B:  $[Mn(NO_2)_6]^{4-}$ 

The complexes are both  $Mn^{2+}$ ,  $d^5$  cases but with different ligands. However,  $NO_2^-$  is a stronger field ligand than is  $H_2O$  which leads to a greater d-orbital splitting energy ( $\Delta$ ) in Complex **B**.



- (a) How many unpaired electrons does complex A have? 5
- (b) Which complex, A or B, will absorb light of longer wavelength?

Since  $Mn(H_2O)_6^{2+}$  has a smaller d-orbital splitting energy ( $\Delta$ ), it should absorb light of lower energy (i.e., longer wavelength) than  $[Mn(NO_2)_6]^{4-}$ .