Chapter 18 -- Review Problem

Consider the gas-phase reaction: $N_2O_5 + H_2O \longrightarrow 2 \ HNO_3$ and the following thermodynamic data.

Compd	ΔH° _f (kJ/mole)	S° (J/mole-K)
N ₂ O _{5(g)}	11.0	356
H ₂ O _(g)	- 242	189
HNO _{3(g)}	- 174	156

- (a) Decide whether or not the above reaction is spontaneous at 25°C by calculating the value of the *appropriate* thermodynamic quantity.
- (b) Calculate the *temperature* (in °C) at which the above reaction should have an equilibrium constant (K_D) equal to 1.00.

$$\Delta S^{\circ} = -233 \text{ J/K} = -0.233 \text{ kJ/K}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -117 \text{ kJ} - (298 \text{ K})(-0.233 \text{ kJ/K}) = -47.6 \text{ kJ}$$

The negative ΔG° value confirms that the reaction is spontaneous (at least under standard conditions).

(b) The temp where InK = 1.00 is the temp at which $\Delta G = 0$.

$$\Delta G = -RT \ln K = -RT \ln(1.00) = 0$$

Because ΔH and ΔS are relatively independent of temperature, we can estimate this temp by setting $\Delta G=0$ as follows.

$$\Lambda G = \Lambda H - T \Lambda S = 0$$

∴ T =
$$\Delta H / \Delta S$$
 = (-117 kJ) / (-0.233 kJ/K) = 502 K

$$T = 502 - 273 = 229 \, ^{\circ}C$$