
Metal Complexes -- Chapter 25 (Sections 25.3 - 25.5)

1. Metal Complex -- consists of a set of ligands that are bonded to a central metal ion by coordinate covalent bonds.

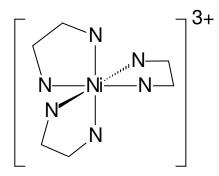
e.g., $Cu^{2+} + 4L \longrightarrow CuL_4^{2+}$ (L = NH₃, H₂O, etc.)

- (a) Ligands are Lewis Bases and can be:
 - *monodentate* -- one donor atom e.g., H₂O, NH₃, CI⁻, OH⁻, etc.
 - *bidentate* -- two donor atoms

e.g., ethylenediamine, NH2-CH2-CH2-NH2 "en"

• *polydentate* -- more than two donor atoms

e.g., EDTA -- ethylenediaminetetraacetic acid (6 donor atoms)


$$\begin{array}{c} \bigcirc & \bigcirc & & \bigcirc & & & \bigcirc \\ \vdots \bigcirc & -C \cdot CH_2 & & H_2C \cdot C - & \bigcirc \vdots & \bigcirc \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & \\ & & & & \\$$

(b) Writing Formulas of complex ions

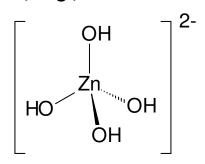
metal ion first, then ligands total charge = sum of metal ion + ligands

e.g.,	metal ion	ligand	<u>complex</u>
	Cu ²⁺	H ₂ O	Cu(H ₂ O) ₄ ²⁺
	Co ³⁺	NH ₃	Co(NH ₃)6 ³⁺
	Fe ³⁺	CN-	Fe(CN)6 ³⁻

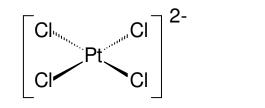
- (c) Chelate Effect complexes with bi- or polydentate ligands are more stable than those with similar monodentate ligands
 - e.g., Ni(en) 3^{3+} is more stable than Ni(NH₃) 6^{3+}

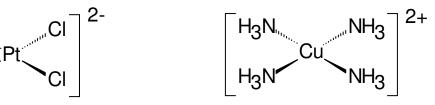
(d) Nomenclature -- study rules and examples in book!

Complex	Name
Ni(CN)4 ²⁻	tetracyanonickelate(II) ion
CoCl ₆ 3-	hexachlorocobaltate(III) ion
Co(NH ₃) ₄ Cl ₂ +	tetraamminedichlorocobalt(III) ion
Na3[Co(NO2)6]	sodium hexanitrocobaltate(III)
[Cr(en)2Cl2]2SO4	dichlorobis(ethylenediamine)- chromium(III) sulfate

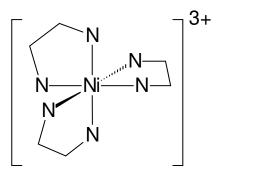

2. **Coordination Number and Structure**

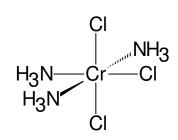
Coord # = number of donor atoms attached to the metal center


(a) Two-Coordinate Complexes -- linear structures

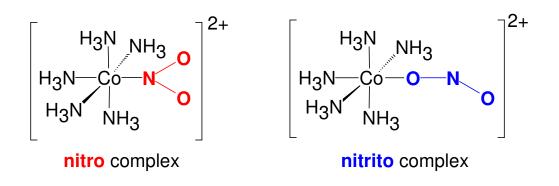

rare except for Ag⁺

- e.g., $Ag(NH_3)_2^+$ and $Ag(CN)_2^-$
- (b) Four-Coordinate Complexes -- two structural types
 - Tetrahedral structures -- common for ions with filled d subshells, e.g., Zn²⁺ as in Zn(OH)₄²⁻



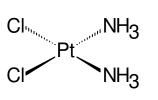

• Square Planar structures -- common for d⁸ metal ions (Ni²⁺, Pd²⁺, Pt²⁺) and for Cu²⁺ e.g.,

(c) Six-Coordinate Complexes -- the most common! "always" octahedral structures, e.g.,

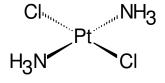


3. Isomers of Coordination Complexes

- Isomers -- same chemical composition (formula) but different structures (due to either the arrangement of atoms or 3-D shape)
- (a) Linkage isomers

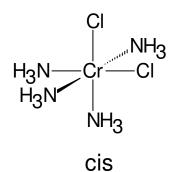

same ligand, with different donor atoms

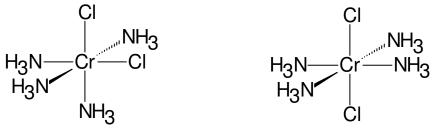
e.g., In [Co(NH₃)₅NO₂]²⁺, the NO₂⁻ ligand can bind to Co through N ("nitro") or O ("nitrito").


(b) Geometrical isomers

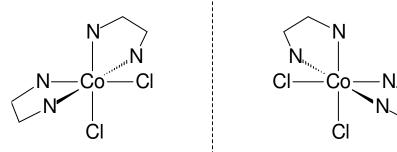
Square Planar complexes

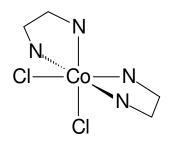
cis


"cisplatin" (anticancer drug)



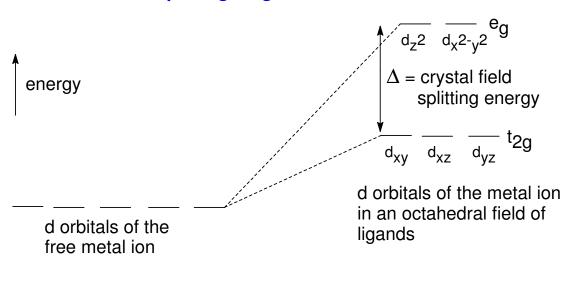
trans


• Octahedral complexes



trans

(c) Enantiomers -- non-superimposable mirror images also called "optical isomers"



4. Crystal Field Theory

(Bonding in Transition Metal Complexes)

Metal complexes are usually highly colored and are often paramagnetic – such facts can be explained by a

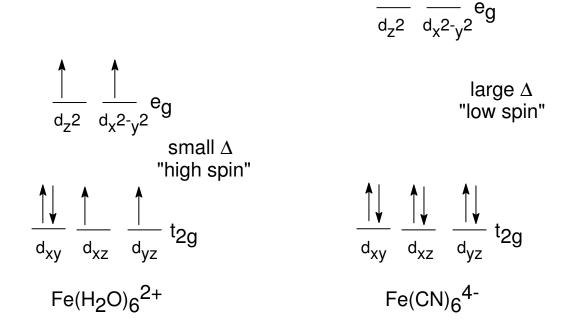
"d-orbital splitting diagram"

The size of Δ depends on

• the nature of the ligand

"spectrochemical series" -- Δ decreases:

```
CN^- > NO_2^- > en > NH_3 > H_2O > OH^- > F^- > CI^- > Br^-
"strong field ligands" "weak field ligands"
```


- the oxidation state of the metal
 ∆ is greater for M³⁺ than for M²⁺
- the row of the metal in the periodic table

for a given ligand and oxidation state of the metal, Δ increases going down in a group

e.g., Δ is greater in Ru(NH₃)₆³⁺ than in Fe(NH₃)₆³⁺

Colors of metal complexes are due to electronic transitions between the t_{2q} and e_q energy levels

d orbital splitting diagrams for octahedral complexes

CN⁻ is a stronger field ligand than is H₂O which leads to a greater Δ value (i.e., a greater d orbital splitting)

as a result,

Fe(H₂O)₆²⁺ is a "high spin" complex and is paramagnetic (4 unpaired electrons)

while,

Fe(CN)6⁴⁻ is a "low spin" complex and is diamagnetic (no unpaired electrons)

the CN⁻ complex with the larger Δ value absorbs light of higher energy (i.e., higher frequency but shorter wavelength)

<u>OMIT</u>: d orbital splitting diagrams for other geometries (i.e., tetrahedral and square planar)