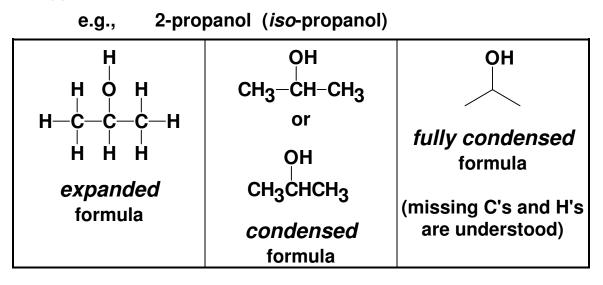
Organic Chemistry & Polymers -- Chapter 21 (and 12.9)


1. Introductory Topics

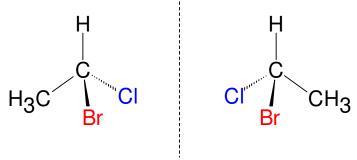
Bonding and Structure Concepts

Review Chapters 9 and 10

(especially Lewis dot formulas, VSEPR, and Valence Bond Theory)

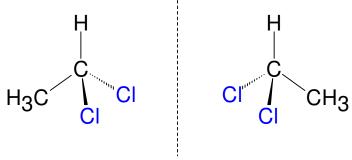
Types of Chemical Formulas

!!! Always FOUR BONDS to Carbon **!!!**


Structural Isomers - same chemical formula, but different arrangement (connectivity) of atoms e.g., C₃H₈O - 3 isomers (2 alcohols, 1 ether) OH CH₃-CH₂-CH₂-OH CH₃-CH-CH₃ 1-propanol 2-propanol $CH_3 - CH_2 - O - CH_3$ ethyl methyl ether number of possible isomers can be very large, e.g.: C₃H₈ C_4H_{10} C_5H_{12} $C_{6}H_{14}$ C8H18 $C_{10}H_{22}$ $C_{20}H_{42}$ > 105 1 2 3 5 18 75

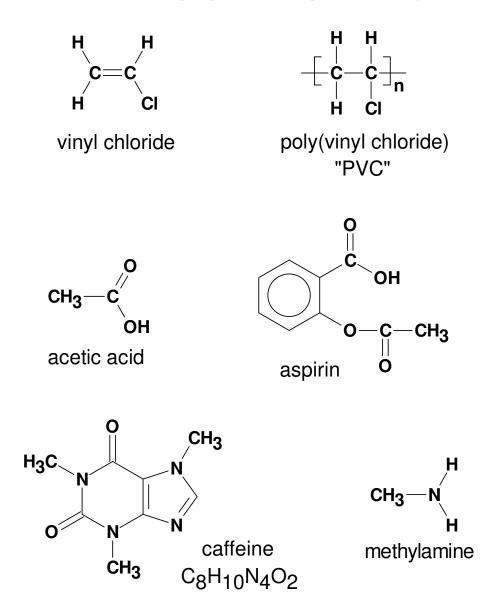
1

Optical Isomers (aka enantiomers)


- non-superimposable mirror images
- occur when *four different groups* are attached to a tetrahedral (sp³) carbon center, i.e., a "chiral center"
- all physical and most chemical properties are the same but enantiomers interact differently with other chiral molecules

e.g., CH₃CH(Br)Cl is chiral and exhibits enantiomers because its mirror images are not superimposable.

mirror


In contrast, CH₃CHCl₂ is not chiral because it is superimposable on its mirror image.

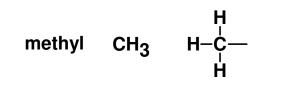
mirror

2. Organic Functional Groups

Tremendous Variety of organic molecular structures and properties are possible, e.g.:

fortunately, the subject is very *systematic* ! and is readily classified by "organic functional groups"

Organic Functional Groups


Family	Characteristic Structural Feature	Examples
Hydrocarbons Alkanes Alkenes Alkynes Aromatic	only single bonds C=C C≡C benzene ring	CH ₃ CH ₃ CH ₂ =CH ₂ HC≡CH
Alcohols	R-OH	CH ₃ CH ₂ OH
Ethers	R-O-R'	CH ₃ OCH ₃
Aldehydes	O R−C−H	О СН ₃ —Ё–Н
Ketones	O R−C−R'	О СН₃−С⊓СН₃
Carboxylic Acids	O R−C−OH	О СН ₃ —Ё−ОН
Esters	O R-C-OR'	О СН ₃ −С⊓ОСН ₃
Amines: 1° 2° 3°	RNH ₂ RNHR' RNR'R''	CH ₃ NH ₂ (CH ₃) ₂ NH (CH ₃) ₃ N
Amides	O H (R') " R-C-N H (R'')	O CH3−C−NH2

3. Hydrocarbons

(a) Alkanes C_nH_{2n+2}

CH ₄	methane	C ₅ H ₁₂	pentane
C ₂ H ₆	ethane	C ₆ H ₁₄	hexane
C ₃ H ₈	propane	C ₇ H ₁₆	heptane
C ₄ H ₁₀	butane	C ₈ H ₁₈	octane, etc

alkyl groups

Nomenclature of alkanes (see book for "rules")

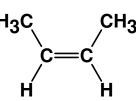
e.g.,

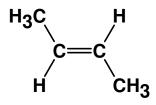
 $\begin{array}{c} \mathsf{CH}_3 \quad \mathsf{CH}_3 \quad \mathsf{CH}_3 \\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}\mathsf{CH}\mathsf{CH}\mathsf{CH}_2\mathsf{CH}\mathsf{CH}_3 \end{array}$ ĊH₂CH₃ 5-ethyl-2,4,6-trimethyloctane

Reactions of alkanes (generally unreactive)

free radical substitution (not selective!)

 C_2H_6 + $Cl_2 \longrightarrow C_2H_5Cl$ + HCl

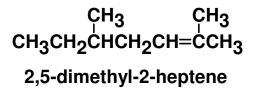

dehydrogenation (reverse Rx is more common!)


 $C_2H_6 \longrightarrow H_2C=CH_2 + H_2$

"cracking" of hydrocarbons (petroleum industry)

(b) Alkenes ~ C=C double bond C_nH_{2n} (with one double bond)

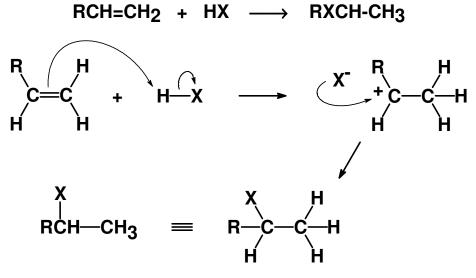
Geometric Isomers are possible, e.g.:



cis-2-butene

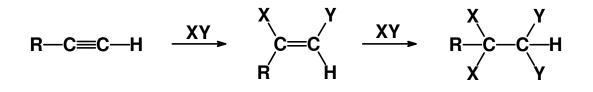
trans-2-butene

- restricted C=C bond rotation
- trigonal planar geometry at C=C carbons
- *sp*² hybridization at C=C carbons


Nomenclature (C=C bond takes preference)

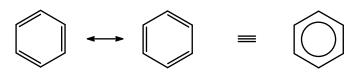
cyclohexene

Reactions of alkenes ~ *addition* to double bond



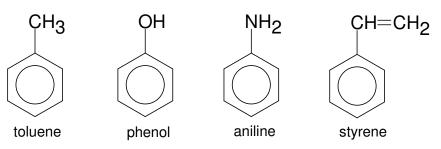
Markarnikov's rule ~ "them that has, gets" (H goes on the C that already has the most H's)

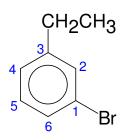
addition of non-polar reagents (H2, Br2, etc.) also occurs

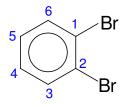

(c) Alkynes ~ C \equiv C triple bond C_nH_{2n-2} (with one triple bond)

- linear geometry at C≡C carbons
- *sp* hybridization at C=C carbons
- no "cis trans" isomers
- similar addition reactions as alkenes (stepwise addition can occur)

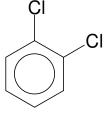
(d) Aromatic Hydrocarbons (Benzene and it's derivatives)

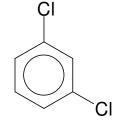

Benzene ~ C_6H_6

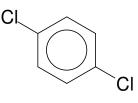

- planar 6-membered ring (especially stable)
- all C-C distances equivalent
- *sp*² hybridization at all carbons
- *delocalized* set of 3 double bonds (6 π electrons)


Derivatives of Benzene

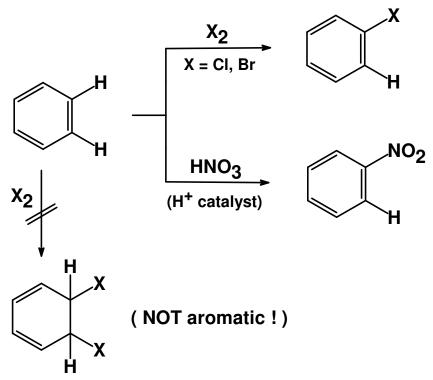
common names ~ monosubstituted



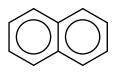

• systematic names ~ disubstituted



- 1-bromo-3-ethylbenzene
- 1,2-dibromobenzene
- ortho, meta, para designators



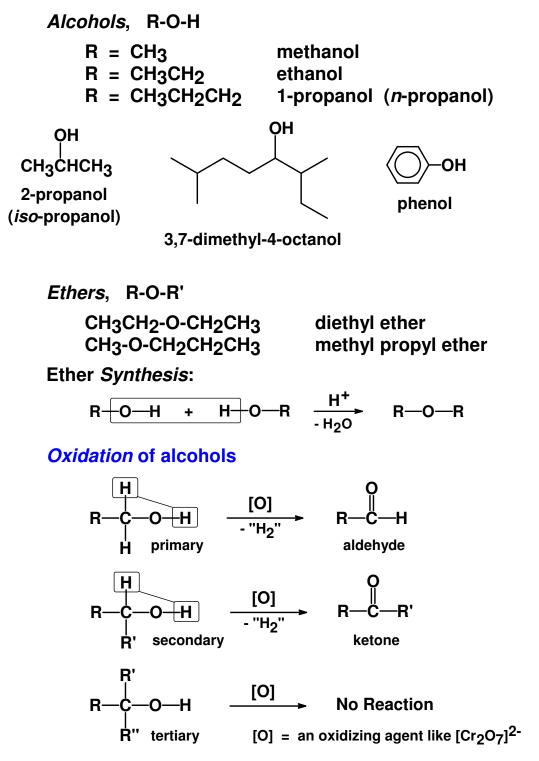
o-dichlorobenzene

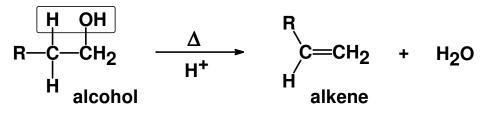

m-dichlorobenzene

p-dichlorobenzene

Substitution Reactions (never addition!)

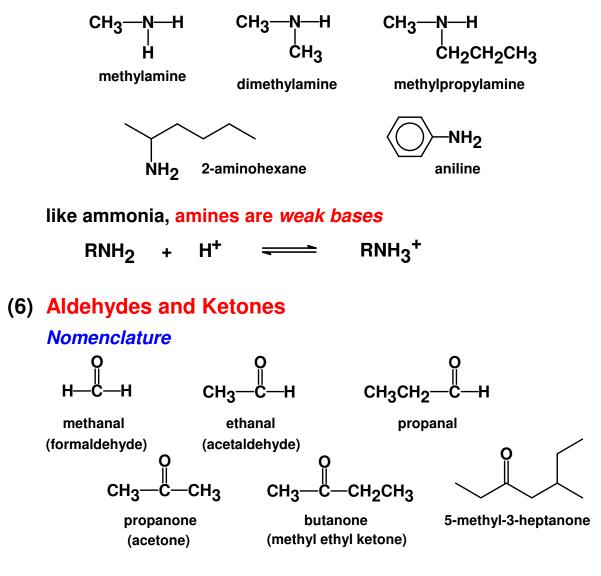
other common aromatic hydrocarbons:



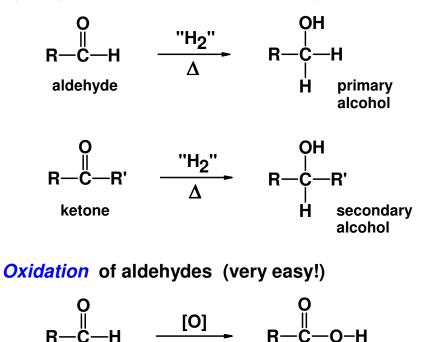

anthracenes

(4) Alcohols and Ethers (organic derivatives of H₂O)

Nomenclature



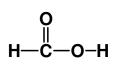
Elimination Reactions of alcohols

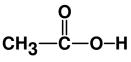


Substitution Reactions of alcohols

(5) Amines (organic derivatives of NH₃)

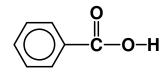
Hydrogenation (reduction) of aldehydes and ketones





carboxylic acid

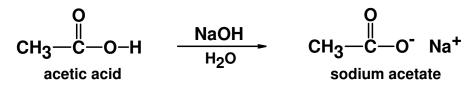
(7) Carboxylic Acids and Esters


Nomenclature of Acids

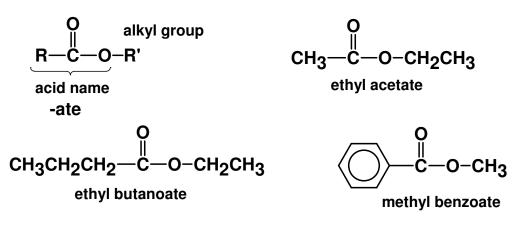
methanoic acid (formic acid) ethanoic acid (acetic acid)

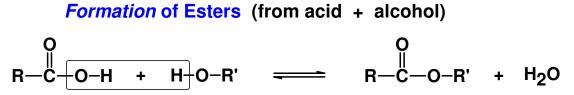
=

benzoic acid

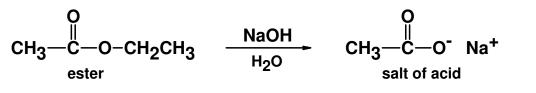

CH₃CH₂CH₂-OH -C

butanoic acid

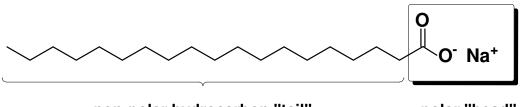

CH₃CH₂CH₂CO₂H


(condensed formula)

Salts of Acids

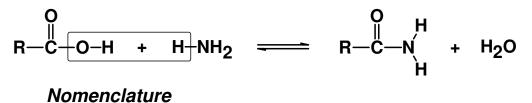


Nomenclature of Esters



Saponification of Esters (hydrolysis)

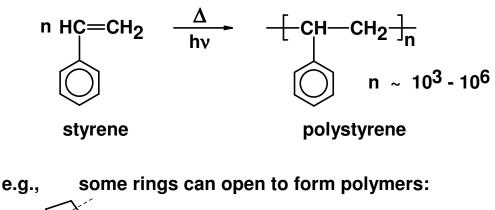
+ HOCH₂CH₃ alcohol



non-polar hydrocarbon "tail" polar "head"

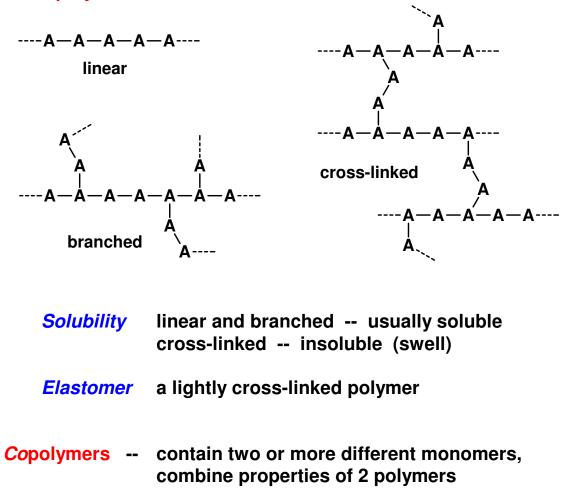
(8) Amides

acid derivatives (e.g., 1° amides: -NH₂ instead of -OH)



 $R = CH_3$ ethanamide $R = CH_2CH_2CH_2CH_3$ pentanamide, etc.

amides (unlike amines) are generally *not basic* (due to e⁻ withdrawing effect of the C=O group)


Organic Polymers (Section 12.9)

- (1) Polymers -- macromolecules made up of many repeating units called monomers
 - e.g., *poly*styrene is formed via the *polymerization* of the monomer, styrene:

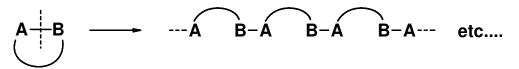
(2) Types of polymer structures

Homopolymers

----A—A—A—A—A—B—B—B—B—B---block copolymer

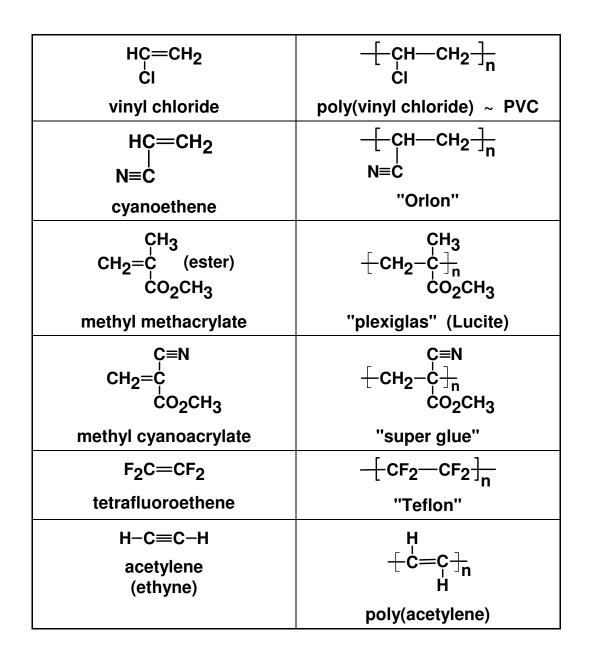
(3) Methods of Polymerization

Addition (very common -- works with most alkenes)


$$CH_2 = CH_2 + CH_2 = CH_2 + CH_2 = CH_2$$
 etc.....
----CH_2 - CH_2 - CH

requires an *initiator* (e.g., a catalyst or UV light) to start the "chain" reaction

Condensation (common for polyesters and polyamides) a small molecule (e.g., H₂O) byproduct is formed

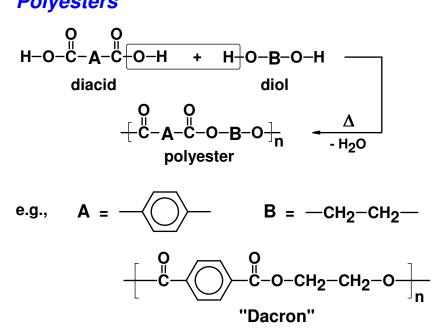

$$X-A-Y + X-B-Y \xrightarrow{-XY} (A-B)$$

Ring-Opening (uncommon except for polyethers and most inorganic polymers, e.g., silicones)

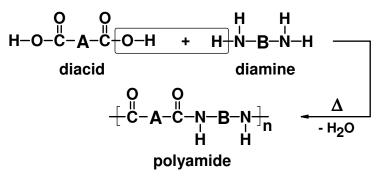
(4) Common Addition Polymers

Monomer	Polymer
CH ₂ =CH ₂	-+CH₂−CH₂-+n
ethylene	polyethylene
HC=CH2	-{снсн ₂ -}_
\bigcirc	Ó "
styrene	polystyrene

Addition polymerization of dienes



"isoprene" (2-methyl-1,3-butadiene)


"natural" rubber

(5) Common Condensation Polymers

Polyesters

Polyamides (nylons)

e.g., $A = -(CH_2)_4 - B = -(CH_2)_6 - CH_2 - CH_2$ e.g., A = B = - $+ \overset{O}{\leftarrow} \overset$