Energy Changes in Chemical Reactions

1. First Law of Thermodynamics (conservation of energy)

E = internal energy = sum of all potential and kinetic energy of the system

 $\Delta E = E_{\text{final}} - E_{\text{initial}}$

E is a "state function" - independent of pathway but, q and w are not ! (they do depend on pathway)

2. Pressure - Volume Work

in general:

q (heat) is "easy" to measure (by calorimetry), but w (work) is not, except for reactions that involve gases

for gaseous systems:

w = - $P\Delta V$ where $\Delta V = V_{final}$ - $V_{initial}$ and P = opposing pressure

e.g., for a gas expanding against a piston:

 ΔV is (+) since V_{final} > V_{initial}

and w is (-) so the system does work on surroundings

3. Heats of Reaction

(a) at constant volume

 $\Delta V = 0$ thus, $w = -P\Delta V = 0$ and, $\Delta E = q + w = q$

 $\Delta E = q_V$ (heat change at **constant volume**)

(b) at constant pressure

define a new state function called enthalpy (H)

H = E + PV

or, $\Delta H = \Delta E + P(\Delta V)$

substituting, $\Delta E = q - P(\Delta V)$ yields:

 $\Delta H = q_D$ (heat change at **constant pressure**)

(c) conversions between ΔE and ΔH

from above, $\Delta H - \Delta E = P \Delta V$

difference is the $P\Delta V$ term, the P-V work usually small, unless gases are involved

when combined with ideal gas law (PV = nRT),

$\Delta H = \Delta E + \Delta nRT$

where, $\Delta n = n_{\text{final}} - n_{\text{initial}}$ (change in total # moles of gas)

be careful with units !

 $R = 0.0821 \text{ L}\cdot\text{atm}\cdot\text{mole}^{-1}\text{K}^{-1} = 8.314 \text{ J}\cdot\text{mole}^{-1}\text{K}^{-1}$

Problem:

Calculate ΔE° for the following reaction, for which $\Delta H^{\circ} = -217.1$ kJ.

 $CaO(s) + 2 HCI(g) \longrightarrow CaCI_{2(s)} + H_{2}O(g)$

 $\Delta n = 1 - 2 = -1$ mole

 $\Delta H^{\circ} = \Delta E^{\circ} + \Delta nRT$

 $-217.1 \text{ kJ} = \Delta \text{E}^{\circ} + (-1 \text{ mole}) (8.314 \text{ x} 10^{-3} \text{ kJ} / \text{ mole K}) (298 \text{ K})$

 $\Delta E^{\circ} = -214.6 \text{ kJ}$ (difference of only about 1%)

Entropy and Spontaneity

1. Two factors effect any change or reaction

(a) Enthalpy (H)

exothermic processes (negative ΔH) tend to be spontaneous, but not always

(b) Entropy (S) ~ degree of disorder or randomness

higher entropy ~ greater energy dispersal change in entropy: $\Delta S = S_{\text{final}} - S_{\text{initial}}$

for a reaction: $\Delta S = S_{\text{products}} - S_{\text{reactants}}$

positive ΔS means:

an increase in disorder as reaction proceeds products more disordered (random) than reactants

in general: Sgas >> Sliquid > Ssolid

for a reaction, **positive** ΔS favors spontaneity

2. Second Law of Thermodynamics

"...for any spontaneous process, the overall entropy of the universe increases..."

 $\Delta S_{univ} = \Delta S_{SYS} + \Delta S_{Surr}$

a spontaneous process can have a negative ΔS_{SYS} for the system only if the surroundings have a larger positive ΔS_{SUT}

3. Third Law of Thermodynamics

"...the entropy of a pure crystalline substance equals zero at absolute zero..."

S = 0 at $T = 0^{\circ} K$

(a) Standard Entropy (at 25°C) = S° [see Table 18.2]

Entropy change for a reaction:

 $\Delta S^{\circ} = \sum S^{\circ}(\text{products}) - \sum S^{\circ}(\text{reactants})$

(b) Gibbs Free Energy = G

defined as: G = H - TS

- · a combination of enthalpy and entropy effects
- · related to maximum useful work that system can do

for a process (e.g., a reaction),

 $\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$

for any spontaneous change, ΔG is negative (the free energy decreases)

4. Standard Free Energy

∆G°	(at STP)	generally used to decide if a reaction
		is spontaneous (Yes, if negative)

Two ways to obtain ΔG° for a reaction

(a) from ΔH° and ΔS° requires ΔH°_{f} and S° data for all reactants and products

 $\Delta \mathbf{G}^{\circ} = \Delta \mathbf{H}^{\circ} - \mathbf{T} \Delta \mathbf{S}^{\circ}$

 $\Delta H^{\circ} = \sum \Delta H^{\circ}_{f}$ (products) - $\sum \Delta H^{\circ}_{f}$ (reactants)

 $\Delta S^{\circ} = \sum S^{\circ}(\text{products}) - \sum S^{\circ}(\text{reactants})$

(b) from standard "Free Energies of Formation" $\Delta G^{\circ}f$

 $\Delta G^{\circ} = \sum \Delta G^{\circ}_{f}$ (products) - $\sum \Delta G^{\circ}_{f}$ (reactants)

where ΔG°_{f} is the free energy change for the formation of one mole of the compound from its elements, e.g.,

 ΔG°_{f} for Al₂(SO₃)₃ equals ΔG° for the following reaction

 $2 \operatorname{Al}_{(S)} + 3 \operatorname{S}_{(S)} + 9/2 \operatorname{O}_{2(g)} \longrightarrow \operatorname{Al}_{2}(\operatorname{SO}_{3})_{3}$

5. Free energy and Equilibrium

(a) for a system at equilibrium:

 $G_{\text{products}} = G_{\text{reactants}} \text{ and } \Delta G = 0$ since, $\Delta G = \Delta H - T\Delta S = 0$ $\Delta H = T\Delta S \text{ or } T = \Delta H / \Delta S$

Problem:

Given the following, determine the normal boiling point of mercury (Hg).

 $\Delta H_{vaporization}$ of Hg = 60.7 kJ / mole

entropies: liquid Hg: $S^{\circ} = 76.1 \text{ J} / \text{mole K}$ gaseous Hg: $S^{\circ} = 175 \text{ J} / \text{mole K}$

Equilibrium: $Hg_{liq} \longrightarrow Hg_{gas} \Delta G = 0$ so, $\Delta H - T\Delta S = 0$ or $T = \Delta H / \Delta S$ $T = [60.7 \times 10^3 \text{ J / mole}] \div [(175 - 76.1) \text{ J / mole K}]$ T = 614 K

(b) Effect of Temperature on ΔG

 ΔG depends on ΔH and ΔS : $\Delta G = \Delta H - T\Delta S$

but ΔH and ΔS are relatively independent of temperature, so ΔG at some temperature T can be estimated:

 $\Delta G^{\circ}T \approx \Delta H^{\circ}_{298} - T\Delta S^{\circ}_{298}$

(c) Relationship between △G° and Equilibrium Constant (K)

For any chemical system:

 $\Delta G = \Delta G^{\circ} + (RT) \ln Q$

if ΔG is not zero, then the system is not at equilibrium it will spontaneously shift toward the equilibrium state

```
At Equilibrium: \Delta G = 0 and Q = K
```

 $\therefore \Delta G^\circ = - RT \ln K$

for gaseous reactions: $K = K_p$

for solution reactions: $K = K_C$

{ units of ΔG must match those of R value }

K values can be determined from thermodynamic data !

Note: when K > 1 ΔG° is negative

∴ spontaneous reactions have large K and negative ∆G° values