Energy Changes in Chemical Reactions

1. First Law of Thermodynamics (conservation of energy)

 E = **internal energy** = sum of all potential and kinetic energy of the system

∆**E = Efinal - Einitial**

 E is a "state function" - independent of pathway but, q and w are not ! (they do depend on pathway)

2. Pressure - Volume Work

in general:

 q (heat) is "easy" to measure (by calorimetry), but w (work) is not, except for reactions that involve gases

for gaseous systems:

 w = - P∆**V** where ∆V = Vfinal - Vinitial and $P =$ opposing pressure

e. g., for a gas expanding against a piston:

 ΔV is (+) since Vfinal > Vinitial

and w is (-) so the system does work on surroundings

3. Heats of Reaction

 (a) at constant volume

 $\Delta V = 0$ thus, w = $-P\Delta V = 0$

and, $\Delta E = q + w = q$

∆**E = qv** (heat change at **constant volume**)

(b) at constant pressure

define a new state function called enthalpy (H)

$H = E + PV$

or, $\Delta H = \Delta E + P(\Delta V)$

substituting, $\Delta E = q - P(\Delta V)$ yields:

∆**H = qp** (heat change at **constant pressure**)

(c) conversions between ∆**E and** ∆**H**

from above, $\Delta H - \Delta E = P \Delta V$

 difference is the P∆V term, the P-V work usually small, unless gases are involved

when combined with ideal gas law $(PV = nRT)$,

∆**H =** ∆**E +** ∆**nRT**

where, $\Delta n = n$ final - ninitial (change in total # moles of gas)

be careful with units !

 $R = 0.0821$ L⋅atm⋅mole-1K-1 = 8.314 J⋅mole-1K-1

Problem:

Calculate ∆E° for the following reaction, for which $\Delta H^{\circ} = -217.1$ kJ.

 $CaO(s)$ + 2 HCl(g) \longrightarrow CaCl_{2(s)} + H₂O(g)

 $\Delta n = 1 - 2 = -1$ mole

 $\Delta H^{\circ} = \Delta E^{\circ} + \Delta nRT$

 $- 217.1 \text{ kJ} = \Delta E^{\circ} + (-1 \text{ mole}) (8.314 \times 10^{-3} \text{ kJ} / \text{ mole K}) (298 \text{ K})$

 ΔE° = - 214.6 kJ (difference of only about 1%)

Entropy and Spontaneity

1. Two factors effect any change or reaction

 (a) Enthalpy (H)

 exothermic processes (negative ∆H) tend to be spontaneous, but not always

(b) Entropy (S) ~ degree of disorder or randomness

higher entropy \sim greater energy dispersal

change in entropy: $\Delta S = S$ final - Sinitial

for a reaction: $\Delta S = S_{\text{products}} - S_{\text{reactants}}$

positive ∆**S means:**

 an increase in disorder as reaction proceeds products more disordered (random) than reactants

in general: $S_{\text{gas}} \gg S_{\text{liquid}} > S_{\text{solid}}$

for a reaction, **positive** ∆**S favors spontaneity**

2. Second Law of Thermodynamics

"...for any spontaneous process, the overall entropy of the universe increases..."

 $\Delta S_{\text{univ}} = \Delta S_{\text{SVS}} + \Delta S_{\text{Surr}}$

a spontaneous process can have a negative ∆S_{SVS} for the system only if the surroundings have a larger positive ∆Ssurr

3. Third Law of Thermodynamics

"...the entropy of a pure crystalline substance equals zero at absolute zero..."

 $S = 0$ at $T = 0^\circ K$

 (a) Standard Entropy (at 25°**C) = S**° [see Table 18.2]

Entropy change for a reaction:

∆**S**° **=** ∑ **S**°**(products) -** ∑ **S**°**(reactants)**

(b) Gibbs Free Energy = G

defined as: $G = H - TS$

- a combination of enthalpy and entropy effects
- related to maximum useful work that system can do

 for a process (e.g., a reaction),

∆**G =** ∆**H - T**∆**S**

for any spontaneous change, ∆**G is negative (the free energy decreases)**

4. Standard Free Energy

Two ways to obtain ∆**G**° **for a reaction**

 (a) from ∆**H**° **and** ∆**S**° requires ∆H°^f requires ΔH° and S° data for all reactants and products

∆**G**° **=** ∆**H**° **- T**∆**S**°

∆**H**° **⁼**[∑] [∆]**H**°**^f (products) -** [∑] [∆]**H**°**^f (reactants)**

∆**S**° **=** ∑ **S**°**(products) -** ∑ **S**°**(reactants)**

 (b) from standard "Free Energies of Formation" ∆**G**°**^f**

∆**G**° **=** ∑ ∆**G**°**f (products) -** ∑ ∆**G**°**f (reactants)**

 where ∆**G**°**^f is the free energy change for the formation of one mole of the compound from its elements, e.g.,**

∆G°f for Al2(SO3)3 equals ∆G° for the following reaction

2 Al(s) + 3 S(s) + 9/2 O2(g) \longrightarrow Al2(SO3)3

5. Free energy and Equilibrium

 (a) for a system at equilibrium:

 Gproducts = Greactants and ∆**G = 0** since, $\Delta G = \Delta H - T \Delta S = 0$ ∆**H = T**∆**S or T =** ∆**H /** ∆**S**

Problem:

 Given the following, determine the normal boiling point of mercury (Hg).

 $\Delta H_{\text{Vaporization}}$ of Hg = 60.7 kJ / mole

entropies: liquid Hg: $S^{\circ} = 76.1 \text{ J} / \text{mole K}$ gaseous Hg: $S^{\circ} = 175 \text{ J}$ / mole K

Equilibrium: Hgliq \implies Hg_{gas} $\Delta G = 0$ so, ΔH - T $\Delta S = 0$ or T = $\Delta H / \Delta S$ $T = [60.7 \times 10^3 \text{ J} / \text{mole}] \div [(175 \text{ - } 76.1) \text{ J} / \text{mole K}]$ $T = 614 K$

(b) Effect of Temperature on ∆**G**

∆G depends on ∆H and ∆S: ∆G = ∆H - T∆S

 but ∆H and ∆S are relatively independent of temperature, so ∆G at some temperature T can be estimated:

[∆]**G**°**^T [≈]** [∆]**H**°**298 - T**∆**S**°**²⁹⁸**

 (c) Relationship between ∆**G**° **and Equilibrium Constant (K)**

For any chemical system:

 $\Delta G = \Delta G^{\circ} + (RT) \ln Q$

 if ∆**G is not zero, then the system is not at equilibrium it will spontaneously shift toward the equilibrium state**

 At Equilibrium: ∆**G = 0 and Q = K**

∴ ∆**G**° **= - RT ln K**

for gaseous reactions: $K = K_p$

for solution reactions: $K = K_c$

{ units of ∆G must match those of R value }

K values can be determined from thermodynamic data !

Note: when $K > 1$ ΔG° is negative

∴ **spontaneous reactions have large K and negative** ∆**G**° **values**