1. Buffer Solutions

A *Buffer Solution* is an acid/base equilibrium system that is capable of maintaining a relatively constant pH even if a significant amount of strong acid or base is added.

(a) Components of a buffer solution:

a mixture of a weak acid and its conjugate base

e.g., acetic acid & sodium acetate (HA & A⁻)

$$HA_{(aq)} = H^+(aq) + A^-(aq)$$

or, ammonium chloride & ammonia (NH₄+ & NH₃)

$$NH_4^+(aq) \longrightarrow H^+(aq) + NH_3(aq)$$

(b) pH of buffer solution: (pH \approx pK_a of HA)

	HA _(aq)	 H+	+	A⁻ _(aq)
Initial	"M"	0		"A"
Change	- X	+ X		+ X
Equil	M - x	х		A + x

 $K_a = [H^+] [A^-] / [HA] = x (A + x) / (M - x)$

since K_a is usually small (< ~ 10⁻⁴):

 $M - x \approx M$ and $A + x \approx A$

thus, $K_a \approx x(A) / M$ or simply,

[H+] ≈ K_a [HA] / [A⁻] (general buffer system)

also, [H+] \approx K_a [moles HA / moles A⁻]

(c) Buffering action (Le Châtelier's Principle)

the major equilibrium in a buffer system:

 $HA_{(aq)} = H^+(aq) + A^-(aq)$

1. What if some acid (H+) is added?

Since H⁺ is a product of above equilibrium, the reaction will shift in reverse, so that:

[HA] will increase and [A-] will decrease

But, as long as some A⁻ remains, the system is still a mixture of HA and A⁻. Therefore, the general equation,

 $[H^+] \approx K_a [HA] / [A^-]$

still applies. Thus, [H+] is still $\approx K_a$

2. What if some base (OH⁻) is added instead?

The added base (OH⁻) will neutralize some of the acid HA and produce more of the conjugate base, A^- .

 $HA + OH^{-} \longrightarrow H_{2}O + A^{-}$

[HA] will decrease and [A-] will increase

But, as long as some HA remains, the system is still a mixture of HA and A⁻, and \therefore still a buffer solution.

Problems

- 1. (a) The pK_a of HF is 3.17. Calculate the pH of a 1.00-L solution that is 1.00 M HF and 1.50 M NaF. (b) What is the pH of this solution after addition of 50.0 mL of 10.0 M HCl?
- What mass of solid NaCN must be added to 500 mL of 0.50 M HCN to prepare a buffer solution with a pH of 9.50? pK_a for HCN is 9.21.

2. Acid - Base Titrations

(Review general acid-base titration concepts and terms in Chapter 4.8.)

Titration of a Weak acid by a Strong Base

- e.g., 25.0 mL of 0.200 M HA (acetic acid) is titrated with 0.200 M NaOH. Determine pH in each of **four regions**:
- (a) at the start -- before any NaOH is added just a simple weak acid: pH = 2.72

(b) before the equivalence point

the acid is partially neutralized by the added OH-

 $HA + OH^- \longrightarrow H_2O + A^-$

since both HA and A⁻ are now present, the mixture is a *buffer solution* !

and $[H^+] \approx K_a$ (mole HA left) / (mole A⁻ produced)

e.g., after addition of 10.0 mL of NaOH, pH = 4.57

(c) at the equivalence point

the acid (HA) is completely neutralized, and only the anion A⁻ is present

... the solution is now the salt of a weak acid !

total volume is now 50.0 mL, so $[A^-] = 0.10 \text{ M}$ and pH = 8.88

(d) after the equivalence point

all acid (HA) is gone and *excess* OH⁻ is present

- ... the pH is determined by how much OH⁻ is left after all the acid has been neutralized
- e.g., after 40.0 mL of NaOH added: pH = 12.66

<u>SUMMARY</u> of Acid - Base Equilibrium Concepts (Chapters 16 and 17)

- 1. pH scale and the autoionization of water (K_W)
- 2. Strong acids and bases
- 3. Weak acids and bases (Ka or Kb)
- Salts of weak acids and salts of weak bases
 (conjugate pairs: K_w = K_aK_b)
- 5. Buffer solutions (Ka) (mixture of weak acid and its conjugate base)
- 6. Polyprotic acids (K_{a1} and K_{a2} etc.)
- 7. Acid-Base Titrations (especially weak acid by strong base)

Do not use the Henderson-Hasselbalch Equation on the Exams !!!

$$pH = pK_a + log \frac{[acid]}{[base]} = No Points!$$

3. Solubility Equilibria

(a) "Insoluble" salts are actually sparingly soluble

equilibrium: solid salt — ions in solution

e.g., In a saturated solution of Ag₂CO₃, the following equilibrium is occurring.

 $Ag_2CO_{3(s)} = 2 Ag_{(aq)} + CO_3^{2}(aq)$

Solubility Product Constant = K_{sp}

$$K_{sp} = [Ag^+]^2 [CO_3^2^-] = 8.1 \times 10^{-12}$$

Given a K_{SD} value, determine the "molar solubility"

let x = molar solubility ! = moles Ag₂CO₃ dissolved / liter $[CO_3^{2-}] = x$ and $[Ag^+] = 2x$ K_{sp} = 8.1 x 10⁻¹² = $[Ag^+]^2 [CO_3^{2-}] = (2x)^2 (x)$ K_{sp} = 4x³ ∴ x = 1.3 x 10⁻⁴ M

(b) Common ion effect:

Sparingly soluble salts are even less soluble when a "common" ion is present.

Le Châtelier's Principle applies here:

salt == cation + anion

If an excess of one of the ions is present, the equilibrium will shift in reverse and less salt will dissolve!

Problem -- Molar solubility of Ag₂CO₃ in 0.10 M Na₂CO₃ ?

let x = molar solubility of Ag₂CO₃ [Ag+] = 2x and, [CO₃²⁻] = 0.10 + x K_{sp} = 8.1 x 10⁻¹² = [Ag+]² [CO₃²⁻] = (2x)² (0.10 + x) but since Ag₂CO₃ is not very soluble, assume x << 0.1 K_{sp} ≈ (2x)² (0.10) ≈ 8.1 x 10⁻¹² \therefore x ≈ 4.5 x 10⁻⁶ M

(c) When will a precipitate form?

The solution must be saturated for a ppt to form. Thus, the *initial* ion concentrations must be greater than the equilibrium values.

e.g., $Ag_2CO_{3(s)} = 2 Ag_{aq}^+ CO_{3^2}(aq)$

If *initial* concentrations of the ions are given, calculate the **ion product**:

 $Q = [Ag^+]^2 [CO_3^{2^-}]$ using the *initial* conc values

If $Q > K_{SD}$ then a precipitate will form!

(d) "Insoluble" salts of weak acids are more soluble in acidic solutions

e.g., $Ag_2S_{(s)} = 2 Ag_{(aq)}^+ S_{(aq)}^{2-}$

if the solution is acidic, some S^{2-} will be converted to HS^{-} and $H_{2}S$, thus causing more $Ag_{2}S$ to dissolve

The process can be viewed as a combination of multiple equilibria, occurring simultaneously:

Omit Section 17.7 -- Qualitative Analysis

4. Complex Ion Equilibria (increases solubility)

Metal ions form *complex ions* with Lewis bases, such as:

 $Cu^{2+}(aq) + 4 NH_{3}(aq) = Cu(NH_{3})_{4}^{2+}(aq)$

This type of reaction is generally very favorable so...

K is very large !

The equilibrium constant is called a Formation Constant

 $K_f = [Cu(NH_3)_4^{2+}] / [Cu^{2+}] [NH_3]^4$ = 1.1 x 10¹³ (Large !)

If a complex ion can form, then an "insoluble" salt will be much more soluble (Le Châtelier Principle again !).

another example:

 $Ag^+(aq) + 2 NH_3(aq) \longrightarrow Ag(NH_3)_2^+(aq)$

Formation Constant:

 $K_f = [Ag(NH_3)_2^+] / [Ag^+] [NH_3]^2 = 1.6 \times 10^7$

Problem

Given the above formation constant for $Ag(NH_3)_2^+$ and the K_{sp} value for AgBr of 5.0 x 10⁻¹³, calculate the molar solubility of AgBr in (a) water, and (b) 0.10 M NH₃.

(a) in water: $AgBr_{(s)} \longrightarrow Ag^+_{(aq)} + Br^-_{(aq)}$ $K_{sp} = [Ag^+] [Br^-] = x^2 = 5.0 \times 10^{-13}$ $\therefore x = molar solubility = 7.1 \times 10^{-7}$

(b) in NH₃ solution, two equilibria must be considered:

AgBr is about 1,000 times more soluble in NH₃ solution than in water alone.