Acid-Base Concepts -- Chapter 16

conjugate bases

CH₄

CH₃-

" CH₅+ "

(b) Amphoteric Substances -- molecules or ions that can function as both acids and bases (e.g., H₂O itself !)

e.g., the bicarbonate ion, HCO3⁻

(c) Relative Strengths of Brønsted Acids

Binary Acids e.g., HCl, HBr, H₂S, etc.

Acid Strength Increases

e.g., relative acidity: $HCI > H_2S$ (across a period)

HI > HBr > HCl > HF (up in a group)

Oxo acids e.g., HNO3, H2SO4, H3PO4, etc.

1. *for same central element*, acid strength increases with # of oxygens

Acid Strength Increases

 $HCIO < HCIO_2 < HCIO_3 < HCIO_4$

2. *for different central element, but same # oxygens,* acid strength increases with electronegativity

e.g., $H_2SO_4 > H_2SeO_4 > H_2TeO_4$

(d) Relative strengths of conjugate acid-base pairs

For example,

HF	+	H ₂ O	H ₃ O+	+	F⁻
acid		base	acid		base

In this case, the equilibrium lies mainly on reactant side. Therefore, " HF is a weaker acid than H_3O^+ "

In general, weak Brønsted acids have strong conjugate bases. (vice versa)

3. Lewis Acid-Base Concept (most general)

(a) Definition (electron pair transfer)

Acid: e⁻ pair acceptor <u>Base</u>: e⁻ pair donor

Lewis acids -- electron deficient molecules or cations.

Lewis bases -- electron rich molecules or *anions*. (have one or more unshared e⁻ pairs)

(b) Lewis acid-base reactions (i.e., all non-redox reactions!)

 $OH^- + CO_2 \longrightarrow HCO_3^-$

4. Auto-ionization of Water and the pH Scale

(a) water undergoes self-ionization to slight extent:

 $H_2O + H_2O \implies H_3O^+(a\alpha) + OH^-(a\alpha)$ $H_3O^+ = hydronium ion$ $OH^- = hydroxide ion$

or, in simplified form:

 $H_2O(I)$ \implies $H^+(aa)$ + $OH^-(aa)$

equilibrium constant:

 $K_{C} = [H^{+}][OH^{-}] / [H_{2}O]$

but, [H₂O] ~ constant ~ 55.6 mole/L at 25°C

so, instead, use the "ion product" for water = K_W

 $K_W = [H^+][OH^-] = 1.0 \times 10^{-14}$ (at 25°C)

in pure water: $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$

```
(b) the pH scale: pH = -\log [H+]

in general: pX = -\log X

e.g., pOH = -\log [OH^-]

and, in reverse: [H+] = 10^{-pH} mole/L

[OH^-] = 10^{-pOH} mole/L

since K_W = [H+][OH^-] = 1.0 \times 10^{-14}

pK_W = pH + pOH = 14.00
```

(c) relative acidity of solutions:

neutral solution

 $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$ pH = pOH = 7.00

acidic solution

basic solution

 $[H^+] < 10^{-7}$ (i.e., less than in pure water) so, pH > 7.00 $[OH^-] > 10^{-7}$ and pOH < 7.00 e.g., if $[OH^-] = 1.00 \times 10^{-3} M$

then pOH = 3.00 and pH = 11.00

Problem

The water in a soil sample was found to have [OH-] equal to 1.47×10^{-9} mole/L. Determine [H+], pH, and pOH

$$[H^+] = K_W / [OH^-] = (1.00 \times 10^{-14}) / (1.47 \times 10^{-9})$$

= 6.80 x 10⁻⁶
$$pH = -\log [H^+] = -\log (6.80 \times 10^{-6}) = 5.17 \text{ (acidic !)}$$

$$pOH = 14.00 - pH = 14.00 - 5.17 = 8.83$$

$$\{ \text{ or, } pOH = -\log [OH^-] = -\log (1.47 \times 10^{-9}) = 8.83 \}$$

5. Strong acids and Bases

(a) Strong Acids (e.g., HCl, HNO₃, etc.) -- 100 % ionized

 $HNO_{3(aa)} + H_{2}O \xrightarrow{100\%} H_{3}O^{+}(aa) + NO_{3}^{-}(aa)$

or, in simplified form:

 $HNO_{3(aq)} \xrightarrow{100\%} H^{+}(aq) + NO_{3}^{-}(aq)$

 $[H^+]$ = initial M of HNO₃

- e.g., in a 0.050 M HNO₃ solution: $[H^+] = 0.050$ and pH = $-\log(0.050) = 1.30$
- (b) Strong Bases (metal hydroxides) -- 100 % ionized

 $NaOH_{(ad)} \xrightarrow{100\%} Na^+_{(ad)} + OH^-_{(ad)}$

 $[OH^{-}] = initial M of NaOH$

Problem

What mass of Ba(OH)₂ (171.34 g/mole) is required to prepare 250 mL of a solution with a pH of 12.50?

First: What is the solution process ? $Ba(OH)_{2(aq)} \xrightarrow{100\%} Ba^{2+}_{(aq)} + 2 OH^{-}_{(aq)}$ so, $[OH^{-}] = 2 \times M \text{ of } Ba(OH)_{2} \text{ solution}$ (2:1 ratio) pOH = 14.00 - pH = 14.00 - 12.50 = 1.50 $[OH^{-}] = 10^{-1.50} = 0.0316 \text{ M}$

Next: How much Ba(OH)₂ is needed for that much OH⁻ ? 250 mL x (0.0316 mol OH⁻ / 1000 mL) = 0.00790 mol OH⁻

0.00790 mol OH⁻ x [1 mol Ba(OH)₂ / 2 mol OH⁻]

x [171.34 g / mol Ba(OH)₂] = 0.677 g

6. Weak Acids and Bases

(a) Weak Acids -- less than 100% ionized (equilibrium !)

in general: HA is a weak acid, A⁻ is its conjugate base HA_(aq) + H₂O \longrightarrow H₃O⁺(aq) + A⁻(aq)

or, in simplified form:

 $HA_{(aq)} = H^+(aq) + A^-(aq)$

Acid Dissociation Constant: Ka

 $K_a = [H^+] [A^-] / [HA]$

relative acid strength:

weak acid:	K _a < ~10 ⁻³
moderate acid:	K _a ~ 1 to 10 ⁻³
strong acid:	K _a >> 1

Problem

Hypochlorous acid, HOCl, has a pK_a of 7.52. What is the pH of 0.25 M solution of HOCl? What is the percent ionization?

 $pK_a = -\log K_a$ $K_a = 10^{-pKa} = 10^{-7.52} = 3.02 \times 10^{-8}$

	HOCI _(aq)	 H+	+	OCI⁻ _(aq)
Initial	0.25	0		0
Change	- X	+ X		+ X
Equil	0.25 - x	х		x

now, substitute the appropriate equilibrium concentrations:

$$\begin{array}{l} {\sf K}_a \ = \ [{\sf H}^+] \ [{\sf OCI}^-] \ / \ [{\sf HOCI}] \ = \ 3.02 \ x \ 10^{-8} \\ (x) \ (x) \ / \ (0.25 \ - \ x) \ = \ x^2 \ / \ (0.25 \ - \ x) \ = \ 3.02 \ x \ 10^{-8} \\ {\rm since} \ {\sf K}_a \ {\rm is \ very \ small}, \ {\rm assume} \ x \ < \ 0.25 \\ {\rm x}^2 \ / \ (0.25) \ \approx \ 3.02 \ x \ 10^{-8} \ \implies x \ \approx \ 8.69 \ x \ 10^{-5} \\ {\rm (assumption \ is \ OK)} \\ {\sf pH} \ = \ - \ \log \ (8.69 \ x \ 10^{-5}) \ = \ 4.06 \ ({\rm solution \ is \ acidic!}) \\ {\rm \% \ ionization} \ = \ ({\rm amount \ HA \ ionized}) \ / \ ({\rm initial}) \ x \ 100\% \\ {\rm = \ 100\% \ x \ (8.69 \ x \ 10^{-5}) \ / \ (0.25) \ = \ 0.035 \ \% \end{array}$$

(b) Weak Bases

in general: B is a weak base, HB+ is its conjugate acid $B_{(aq)} + H_2O \longrightarrow HB^+_{(aq)} + OH^-_{(aq)}$

Base Dissociation Constant: Kb

 $K_b = [HB^+][OH^-]/[B]$

e.g., NH₃ is a weak base:

$$NH_{3(aq)} + H_{2}O = NH_{4}+(aq) + OH^{-}(aq)$$
$$K_{b} = [NH_{4}+][OH^{-}] / [NH_{3}] = 1.8 \times 10^{-5}$$
$$pK_{b} = -\log K_{b} = 4.74$$

Note: Since OH⁻ rather than H⁺ appears here, first find [OH⁻] or pOH, and then convert to pH

sample problem: 0.25 M solution of NH₃ set up conc table as usual, solve for $x = [OH^-]$

 $[OH^{-}] = 2.12 \times 10^{-3}$ pOH = 2.67 pH = 11.33 (basic !)

- 7. Salts of Weak Acids and Bases
 - (a) Conjugate Acid Base Pairs (HA and A⁻)

 K_a : HA == H+ + A⁻ K_b : A⁻ + H₂O == HA + OH⁻

for any conjugate acid-base pair:

 $K_a K_b = K_W$ and $pK_a + pK_b = 14.00$

(b) Salt of a Weak Acid (e.g., NaCN) -- Basic Solution

Anion acts as a weak base:

 K_{b} : $CN^{-} + H_{2}O = HCN + OH^{-}$ $K_{b} = K_{w} / K_{a} = [OH^{-}] [HCN] / [CN^{-}]$

e.g., K_a for HCN is 6.2 x 10⁻¹⁰ what is pH of a 0.50 M NaCN solution ?

$$K_b = K_w / K_a = (1 \times 10^{-14}) / (6.2 \times 10^{-10})$$

= 1.6 × 10⁻⁵

use a concentration table based on K_b reaction above:

 $x = [OH^{-}] = [HCN]$ $[CN^{-}] = 0.50 - x \approx 0.50 \quad (since K_b is small)$ $K_b = [OH^{-}] [HCN] / [CN^{-}] \approx x^2 / 0.50 \approx 1.6 \times 10^{-5}$ $x = [OH^{-}] \approx 2.8 \times 10^{-3}$ $pOH = 2.55 \quad and \quad pH = 11.45 \quad (basic !)$ (c) Salt of a Weak Base (e.g., NH₄Cl) -- Acidic Solution

Cation acts as a weak acid:

Problem

The pK_a value for HCN is 9.21. What molar concentration of NaCN is required to make a solution with a pH of 11.75? [answer: 2.0 M NaCN]

8. Polyprotic Acids

e.g., diprotic acids, H₂A, undergo stepwise dissociation:

 $H_{2}A = HA^{-} + H^{+} K_{a1} = [HA^{-}][H^{+}]/[H_{2}A]$ $HA^{-} = A^{2-} + H^{+} K_{a2} = [A^{2-}][H^{+}]/[HA^{-}]$

usually, $K_{a1} >> K_{a2}$ so that:

the 1st equilibrium produces most of the H+ but, the 2nd equilibrium determines [A²⁻]

Problem

Ascorbic acid (vitamin C), $H_2C_6H_2O_6$, is an example of a diprotic acid with $K_{a1} = 7.9 \times 10^{-5}$ and $K_{a2} = 1.6 \times 10^{-12}$. For a 0.10 M solution of ascorbic acid, determine the pH and the concentrations of the mono anion, $HC_6H_2O_6^{-1}$, and the dianion, $C_6H_2O_6^{2-1}$.

based on the first equilibrium:

must use the 2nd equilibrium to find [A²-]:

$$K_{a2} = [A^{2-}][H^+] / [HA^-]$$
 but, from above [H⁺] ≈ [HA⁻]
∴ $K_{a2} \approx [A^{2-}]$ (a general result for H₂A !)
 $[A^{2-}] \approx 1.6 \times 10^{-12}$