Solutions -- Chapter 13

The Solution Process

1. Why do things dissolve?

- driving force toward more random state (entropy)
- attractive forces between solute and solvent (enthalpy)

"like dissolves like"

(ionic and polar substances tend to be water soluble)

2. Heats of Solution (ΔH_{SOIn})

 ΔH_{soln} is a combination of two opposing effects:

Lattice Energy (EL)

endothermic (a positive ΔH value) energy required to separate solid particles

Hydration (solvation) Energy (E_H)

exothermic (a negative ΔH value) energy gained as solute particles are surrounded by solvent molecules

 $\therefore \Delta H_{soln} \approx E_{L} + E_{H}$ (ΔH_{soln} can be positive or negative)

3. Solubility -- How much will dissolve?

units are usually:g solute per 100 g of solution"saturated" solution:maximum amount of solute is
dissolvedsolute(undissolved)solute(dissolved)

4. Effect of Temperature on Solubility

most substances are more soluble at higher temperature

5. Effect of Pressure on Solubility

no significant effect for solid or liquid solutes, but major effect with gaseous solutes dissolved in liquid solvents

Henry's Law:	gases are more soluble at higher pressure
	(e.g., carbonated beverage)

 $C_g \propto P_g$ or $C_g = k_g P_g$ or $C_1/C_2 = P_1/P_2$

Concentrations of Solutions

1. Molarity (M)

M = moles of solute / liter of solution

2. Mole Fraction (and mole percent)

 X_A = moles A / [moles A + moles B + . . .]

mole % = $X_A \times 100\%$

mixtures of gases: $X_A \propto n_A \propto P_A$ (constant temp)

so, $X_A = P_A / P_{total}$

3. Weight (or Mass) Fraction (and weight percent)

WF_A = mass A / mass of solution

Wt % = WFA x 100%

e.g., a 5.00% (by weight) solution of NaCl contains:

5 g NaCl in 100 g of solution (5 g NaCl and 95 g H_2O)

related terms: parts per million (and parts per billion):

ppm = mass fraction x 10^6 **ppb** = mass fraction x 10^9

4. Molality (m) -- don't confuse it with Molarity (M) !!!

m = moles solute / kg of solvent

e.g., molality of above 5.00% NaCl solution?

m = [(5.00 g NaCl) x (1 mole NaCl / 58.4 g NaCl)] / (0.095 kg) = 0.90 mole NaCl / kg = 0.90 m

5. Conversions between concentration methods

Example: Commercial hydrobromic acid, HBr, is 40.0% by weight. The density of this solution is 1.38 g/mL. Calculate the molality, molarity, and mole fraction of this HBr solution.

40.0% HBr means that 100 g of solution contains: 40.0 g HBr and 60.0 g H₂O

moles HBr = $40.0 \text{ g} \times (1 \text{ mole} / 80.9 \text{ g}) = 0.494 \text{ mole}$ moles H₂O = $60.0 \text{ g} \times (1 \text{ mole} / 18.0 \text{ g}) = 3.333 \text{ mole}$

 $X_{HBr} = 0.494 / (0.494 + 3.333) = 0.129$ (or 12.9 mole %)

m = moles HBr / kg H₂O = 0.494 mole / 0.060 kg = 8.23 m

to find molarity, need volume of solution (from density):

volume of 100 g of soln = 100 g x (1 mL / 1.38 g) = 72.5 mL

M = mole HBr / L of soln = 0.494 mole / 0.0725 L = 6.82 M

Colligative Properties

(depend on number of solute particles)

1. Vapor Pressure (related to mole fraction of solvent)

Vapor pressure of solution is always less than the pure solvent.

For solutions of *non-volatile* solutes, *Raoult's Law* applies:

 $P_{solution} = X_{solvent} \cdot P^{\circ}_{solvent}$

OMIT -- mixtures of two or more volatile components (pp 597-599)

2. Freezing Point Depression and Boiling Point Elevation (related to *molality* of the solution)

change in freezing and boiling points:

$$\Delta t_{f} = K_{f}m \qquad \Delta t_{b} = K_{b}m$$

where K_f and K_b are properties of the solvent:

K_f = molal freezing point depression constant

 K_b = molal boiling point elevation constant

e.g., for water: $K_f = 1.86 \text{ °C} / \text{m}$ and $K_b = 0.51 \text{ °C} / \text{m}$

Problem:

A solution of 6.400 g of an unknown compound in 100.0 g of benzene (C_6H_6) boils at 81.7°C. Determine molecular mass of the unknown.

Data for benzene: $K_f = 5.07 \degree C / m$ $t_f = 5.07 \degree C$ $K_b = 2.53 \degree C / m$ $t_b = 80.2 \degree C$

 $\Delta t_{b} = 81.7 - 80.2 = 1.5 \ ^{\circ}C$

m = $\Delta t_b / K_b = (1.5 \ ^\circ\text{C}) / (2.53 \ ^\circ\text{C} / m) = 0.593 \text{ m}$ = 0.593 mole / kg

(0.100 kg) x (0.593 mole / kg) = 0.0593 mole molecular mass = g / mole = 6.40 g / (0.0593 mole) = 108 g / mole

3. Osmotic Pressure (see Figure 13.16)

<u>osmosis</u> -- passage of solvent through a "semipermeable" membrane into a solution

osmotic pressure (П) -- back pressure required to stop osmosis

 $\Pi \propto M$ (at constant temp)

more generally:

 $\Pi V = nRT$ (the van't Hoff equation)

Osmotic pressure measurements (and the van't Hoff equation) are very useful for determining molecular masses of unknowns, especially large molecules, e.g., polymers, proteins, etc.

4. Dissociation of Solutes

e.g., $NaCl(s) \longrightarrow Na^{+}(aq) + Cl^{-}(aq)$

moles of ions = 2 times moles of NaCl

so, colligative properties are about twice as large

Colloidal Dispersions

Colloid -- fluid suspension of very small particles (~ nanometers) -- not a true solution

Types and examples of colloids -- Table 13.10

common examples: soaps, milk, whipped cream, fog, jellies, paint, etc.

how soaps work -- micelle formation