Chem 10123, Quiz 8

Answer Key

April 8, 2020

 (2 points) Write balanced ionic equations for the half reactions that occur at the anode and cathode for the electrolysis of an aqueous solution of Cu(NO₃)₂. *Anode*:

 $\begin{array}{rcl} 2 \ H_2 O & \longrightarrow & O_{2(g)} & + & 4 \ H^+ & + & 4 \ e^- \\ \\ Cathode: & & \\ Cu^{2+}(aq) & + & 2 \ e^- & \longrightarrow & Cu(s) & & see \ note \ below^* \end{array}$

2. Consider the following galvanic cell in which the volume of each half-cell is 0.500 L.

 $Pb_{(s)} | PbO_{(s)} | OH^{-}(3.00 \text{ M}) || Au^{3+}(1.00 \text{ M}) | Au_{(s)}$

(a) (3 points) Write balanced chemical equations for the two half-reactions and for the overall cell reaction.

Anode:

$$Pb(s) + 2 OH^{-}(aq) \longrightarrow PbO(s) + H_2O + 2 e^{-} E^{\circ} = -0.58 v$$

Cathode:

 $Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s) = 1.50 v$

Cell:

 $3 Pb_{(s)} + 6 OH^{-}_{(aq)} + 2 Au^{3+}_{(aq)} \longrightarrow 3 PbO_{(s)} + 3 H_2O + 2 Au_{(s)}$

(b) (5 points) Determine the *cell potential* (E_{cell}) for the cell as described above.

 $E^{\circ}_{cell} = E^{\circ}_{red} + E^{\circ}_{oxid} = 1.50 \text{ v} + (0.58 \text{ v}) = 2.08 \text{ v}$ $E_{cell} = E^{\circ}_{cell} - (0.0592/n) \log Q$ $Q = 1 / [OH^{-}]^{6} [Au^{3+}]^{2} = 1 / (3.00)^{6} (1.00)^{2} = 0.001372$ $E_{cell} = 2.08 \text{ v} - (0.0592/6) \log(0.001372) = 2.08 - (-0.028) = 2.11 \text{ v}$

*Credit was also given for the possible reduction of NO_3^- instead of Cu^{2+} :

 $NO_3^- + 4 H^+ + 3 e^- \longrightarrow NO + 2 H_2O = 0.96 v$

Although this reduction has a higher potential than Cu^{2+} , it requires an acidic solution (to supply the H⁺ reactant). $Cu(NO_3)_{2(aq)}$ is neutral, so the Cu^{2+} reduction actually occurs at the cathode.

- 2. continued.....
 - (c) (5 points) SHOW ALL WORK. If current is drawn from the above cell at a constant rate of 0.50 amp, determine the pH of the solution in the Pb half-cell after 72 hours.

 $(0.50 \text{ amp}) (72 \text{ hr}) (3600 \text{ sec / hr}) = 129,600 \text{ amp} \cdot \text{sec}$ $(129,600 \text{ amp} \cdot \text{sec}) (1 \text{ coul / amp} \cdot \text{sec}) (1 \text{ mole } \text{e}^- / 96,485 \text{ coul}) = 1.343 \text{ mole } \text{e}^ (1.343 \text{ mole } \text{e}^-) (2 \text{ mole } \text{OH}^- / 2 \text{ mole } \text{e}^-) = 1.343 \text{ mole } \text{OH}^- \text{ consumed}$ initial mole $\text{OH}^- = (0.500 \text{ L}) (3.00 \text{ mole/L}) = 1.50 \text{ mole}$ $\text{OH}^- \text{ remaining } = 1.50 \text{ mole } - 1.343 \text{ mole } = 0.157 \text{ moles } \text{OH}^ [\text{OH}^-] = 0.157 \text{ mole / } 0.50 \text{ L} = 0.314 \text{ M}$ $\text{pOH} = -\log(0.314) = 0.503 \qquad \text{pH} = 13.50$

3. (5 points) SHOW ALL WORK. Use appropriate electrochemical data to determine the *formation constant* (K_f) for AuCl₄ (aq). *Include balanced chemical equations for all relevant reactions*.