Chem 10123, Quiz 6 March 18, 2020		Name:(Please Print)	
1.	(6 points) SHOW ALL WORK. A gas is comprevolume of 1.20 L by an external pressure of 2.5 at no f heat. Determine the change in the internal energy	n. During the compression, the gas releases 225 J	
2.	(4 points) In the following statement, fill in the bla ΔG , ΔH , ΔS , R, and/or combinations of them.	nks with the relevant thermodynamic terms, e.g.,	

If the equilibrium constant (K) for a reaction is measured at various temperatures (T), a plot of

on the y-axis vs on the x-axis should be a straight

line in which the slope = _____ and the y-intercept = _____.

3. (10 points) **SHOW ALL WORK.** Consider the following gas-phase reaction and the related thermodynamic data. Determine the equilibrium constant (K_p) for this reaction at a temperature of 450 K.

 $\text{CO}_{2(g)}$ + $\text{CCl}_{4(g)}$ \Longrightarrow 2 $\text{COCl}_{2(g)}$

(υ)	νΟ/	(Ο)
Compound	$\Delta \mathrm{H}^{\circ}_{\mathrm{f}}$ (kJ/mole)	S° (J/mole⋅K)
CO _{2(g)}	- 393.5	213.8
CCl _{4(g)}	- 95.7	309.7
COCl _{2(g)}	- 219.1	283.5