March 4, 2020

1. The simple reaction, $A \longrightarrow B + C$, is thought to be a *first order* process. In one kinetics experiment, the following data was obtained.

[A]	0.300	0.222	0.150	0.108	0.0750	0.0521	0.0375
Time (sec)	0	20	40	60	80	100	120

(a) (2 points) How would you plot this data to confirm that the reaction is actually first order?

Plot In[A] vs time. It should be a straight line for a 1st order reaction.

(b) (5 points) Determine the instantaneous rate of this reaction in units of mole/L·sec at time t = 30 seconds. **Show a calculation.**

rate =
$$\triangle$$
 conc / \triangle time (use 2 points around the t = 30 sec point)
= $(0.222 - 0.150)$ mole/L] / [(40 - 20) sec
= 3.60×10^{-3} mole / L·sec

- (b) (3 points) Assuming that it is first order, the half-life of this reaction is 40 sec and the rate constant (k) is 0.0173 sec⁻¹.
- 2. (10 points) A kinetic study of the following gas-phase reaction gave the concentration vs initial rate data summarized below. 2 A + B₂ \longrightarrow 2 AB

Expt	[A]	[B ₂]	initial rate (mole/L·sec)
(1)	0.250	0.100	1.375 x 10 ⁻⁴
(2)	0.650	0.450	1.972 x 10 ⁻³
(3)	1.250	0.450	7.291 x 10 ⁻³
(4)	1.250	0.100	3.438 x 10 ⁻³

Determine the rate law for this reaction. Clearly SHOW how you arrive at your answer. (It is not necessary to determine the rate constant, k.)

rate =
$$k[A]^X[B_2]^Y$$

Expts 1 and 4 -- constant [B₂], use to determine x

$$(3.438 \times 10^{-3}) / (1.375 \times 10^{-4}) = (1.25 / 0.25)^{X}$$

$$25 = (5)^{X}$$
 : $x = 2$

Expts 3 and 4 -- constant [A], use to determine y

$$(7.291 \times 10^{-3}) / (3.438 \times 10^{-3}) = (0.450 / 0.100)^{y}$$

$$2.121 = (4.50)^{y}$$
 $\therefore y = 1/2$

rate =
$$k [A]^2 [B_2]^{1/2}$$