Chem	10123,	Ouiz	5
	,	V	_

March 4, 2020

Name:		
	(Please Print)	

1. The simple reaction, $A \longrightarrow B + C$, is thought to be a *first order* process. In one kinetics experiment, the following data was obtained.

[A]	0.300	0.222	0.150	0.108	0.0750	0.0521	0.0375
Time (sec)	0	20	40	60	80	100	120

- (a) (2 points) How would you plot this data to confirm that the reaction is actually first order?
- (b) (5 points) Determine the instantaneous rate of this reaction in units of mole/L·sec at time t = 30 seconds. **Show a calculation.**
- (b) (3 points) Assuming that it is first order, the half-life of this reaction is ______ sec and the rate constant (k) is _____ sec-1.
- 2. (10 points) A kinetic study of the following gas-phase reaction gave the concentration vs initial rate data summarized below. 2 A + B₂ \longrightarrow 2 AB

Expt	[A]	[B ₂]	initial rate (mole/L·sec)
(1)	0.250	0.100	1.375 x 10 ⁻⁴
(2)	0.650	0.450	1.972 x 10 ⁻³
(3)	1.250	0.450	7.291 x 10 ⁻³
(4)	1.250	0.100	3.438 x 10 ⁻³

Determine the rate law for this reaction. Clearly SHOW how you arrive at your answer. (It is not necessary to determine the rate constant, k.)