Answer Key

Chem 10123, Quiz 4

February 19, 2020

(9 points) Indicate whether each of the following aqueous solutions is acidic (A), basic (B), or neutral (N). Also, for each solution, write a *complete, balanced net-ionic equation* for the major *equilibrium* reaction that is occurring in solution.

В	NaBrO _(aq)	BrO ⁻ (aq) + H ₂ O	<u> </u>	HBrO _(aq) + OH ⁻ _(aq)
Α	$(NH_4)_2SO_4(aq)$	$NH_4^+(aq)$ + H_2O		NH _{3(aq)} + H ₃ O ⁺ (aq)
В	C ₆ H ₅ N _(aq)	$C_6H_5N_{(aq)} + H_2O$		C ₆ H ₅ NH ⁺ (aq) + OH ⁻ (aq)

- 2. A certain solution (call it Solution A) is prepared by adding 25.0 g of sodium benzoate "NaA" to 250.0 mL of 1.00 M benzoic acid "HA" ($K_a = 6.50 \times 10^{-5}$) and then diluting to a total volume of 1.00 L. (molar masses: NaA = 144.1, HA = 122.1)
 - (a) (6 points) **SHOW ALL WORK.** Determine the pH of solution **A**. Include the important *equilibrium* reaction. (For benzoic acid, use HA for simplicity.)

(25.0 g NaA) (1 mole / 144.1 g) = 0.173 mole NaA = 0.173 mole A⁻ (250 mL) (1.00 mole HA / 1000 mL) = 0.250 mole HA Buffer Solution! HA \longrightarrow H⁺ + A⁻ K_a = [H⁺] [A⁻] / [HA] = 6.50 x 10⁻⁵ [H⁺] = K_a [HA] / [A⁻] = K_a (mole HA) / (mole A⁻) [H⁺] = (6.50 x 10⁻⁵) (0.250 mole) / (0.173 mole) = 9.393 x 10⁻⁵ M pH = - log(9.393 x 10⁻⁵) = 4.03

(b) (6 points) **SHOW ALL WORK.** Suppose that 20.0 mL of 5.00 M KOH is added to solution **A**. Write a *balanced, net-ionic equation* for any reaction that occurs upon mixing and determine the pH of the final solution.

(20.0 mL) (5.00 mole OH⁻ / 1000 mL) = 0.100 mole OH⁻ added

$HA + OH^{-} \longrightarrow H_2O +$	+ A ⁻	(neutralization occurs on mixing)				
0.250 0.100 moles	0.173 n	noles				
- 0.100 - 0.100	+ 0.100					
0.150 0	0.273	(still a buffer solution!)				
[H ⁺] = K _a [HA] / [A ⁻] = K _a (mole HA) / (mole A ⁻)						
[H ⁺] = (6.50 x 10 ⁻⁵) (0.150 mole) / (0.273 mole) = 3.571 x 10 ⁻⁵						
pH = $-\log(3.571 \times 10^{-5}) = 4.45$ (pH only slightly higher after 40 % of HA consumed!)						