Chem	10123,	Oniz	2
CIICIII	10123,	Quiz	4

January 29, 2020

Name: _____(Please Print)

1. (3 points) Complete the equilibrium constant (K_c) expression for the following reaction.

$$H_3PO_4(aq) + 2OH_{(aq)} \longrightarrow HPO_4(aq) + 2H_2O_{(1)}$$

$$K_c = -$$

- 2. (3 points) If $K_c = 125$ for this reaction: $2 A \implies 3 B + C$, then the value of K_c for the related reaction: $B + 1/3 C \implies 2/3 A$, is equal to ______.
- 3. Consider the following reaction that is known to be endothermic ($\Delta H^{\circ} = 156 \text{ kJ}$).

$$N_2O_{(g)} + NO_{2(g)} \longrightarrow 3NO_{(g)}$$

(a) (4 points) Which of the factors listed below would cause the equilibrium concentration of NO to increase? Circle all that apply.

add a catalyst increase the temperature remove some NO_2 decrease the pressure add some N_2O

(b) (10 points) SHOW ALL WORK. Clearly state and justify any assumptions that you may make. At 27 °C, the above reaction has an equilibrium constant, $K_c = 2.70 \times 10^{-20}$. In one experiment, a 1.00 L container was filled with 0.020 moles of N₂O and 0.050 moles of NO₂. Determine the molar concentration of NO in this system after equilibrium is established.