1. (10 points) Use the ion-electron method to balance the following redox reaction that occurs in *basic* solution. Write *complete*, *balanced equations* for the individual half-reactions and for the overall net ionic equation. Also, *circle the reducing agent* in this reaction.

$$N_3^-(aq)$$
 + $S_2O_3^2^-(aq)$ \longrightarrow $SO_3^2^-(aq)$ + $NH_3(aq)$ (reducing agent)

Reduction Half Reaction:

$$8 e^- + 9 H_2O + N_3^- \longrightarrow 3 NH_3 + 9 OH^-$$

Oxidation Half Reaction:

$$6 \text{ OH}^- + \text{S}_2 \text{O}_3^2 - \longrightarrow 2 \text{SO}_3^2 - + 3 \text{H}_2 \text{O} + 4 \text{ e}^- \quad (x2)$$

Net Ionic Equation:

$$3 \text{ H}_2\text{O} + 3 \text{ OH}^- + \text{N}_3^- + 2 \text{S}_2\text{O}_3^{2-} \longrightarrow 3 \text{ NH}_3 + 4 \text{SO}_3^{2-}$$

2. (3 points) A compound sometimes called "calcium cerium selenate" has the formula CaCe(SeO₄)₃. Give the oxidation states of all four elements in this compound.

$$Ca = +2$$
 $Ce = +4$ $Se = +6$

3. (10 points) **SHOW ALL WORK.** A 100.0 mL sample of a solution of Sn²⁺ required 42.15 mL of 0.1100 M KMnO₄ to reach the equivalence point in a titration. Assuming that the main products of the redox reaction are Sn⁴⁺ and Mn²⁺, determine the molarity of the Sn²⁺ solution. (*Note*: Your answer must include the *balanced*, *net-ionic equation* for the titration reaction, in acidic solution.)

oxid:
$$\operatorname{Sn}^{2+} \longrightarrow \operatorname{Sn}^{4+} + 2 \, \operatorname{e^-}$$
 (x 5)

red: $\operatorname{5e^-} + \operatorname{8H^+} + \operatorname{MnO_4}^- \longrightarrow \operatorname{Mn}^{2+} + \operatorname{4H_2O}$ (x 2)

net Rx: $\operatorname{5Sn}^{2+} + \operatorname{16H^+} + \operatorname{2MnO_4}^- \longrightarrow \operatorname{2Mn}^{2+} + \operatorname{8H_2O} + \operatorname{5Sn}^{4+}$
(0.04215 L) (0.110 mole $\operatorname{MnO_4}^- / \operatorname{L}$) (5 mole $\operatorname{Sn}^{2+} / \operatorname{2}$ mole $\operatorname{MnO_4}^-$)

= 0.01159 mole Sn^{2+}
(0.01159 mole Sn^{2+}) / (0.100 L) = 0.116 M Sn^{2+}

- 4. (6 points) Write *balanced ionic equations* for the half-reactions.
 - (a) The *cathode* reaction in the electrolysis of *aqueous* KNO₃.

$$2 \text{ H}_2\text{O} + 2 \text{ e}^- \longrightarrow \text{H}_2 + 2 \text{ OH}^-$$

(b) The *anode* reaction in the electrolysis of *molten* Al₂O₃.

$$2 O^{2-} \longrightarrow O_2 + 4 e^{-}$$

(c) The *anode* reaction in the electrolysis of *aqueous* Na₂SO₄.

$$2 \text{ H}_2\text{O} \longrightarrow \text{O}_2 + 4 \text{ H}^+ + 4 \text{ e}^-$$

5. Consider the following reaction and the related thermodynamic data below.

$$3 \text{ SO}_{2(g)} + 2 \text{ NO}_{2(g)} \longrightarrow 3 \text{ SO}_{3(g)} + \text{ N}_{2}\text{O}_{(g)}$$

	Standard Heat of	Standard Entropy					
	Formation (ΔH° _f) in kJ/mole	(S°) in J/mole·K					
$NO_{2(g)}$	33	240					
$N_2O_{(g)}$	82	221					
$SO_{2(g)}$	- 297	248					
SO _{3(g)}	- 396	257					

(a) (10 points) **SHOW ALL WORK.** Is the above reaction spontaneous at 25 °C? Determine the appropriate thermodynamic quantity that is required in order to answer this question.

$$\Delta H^{\circ} = 3(-396) + 82 - [3(-297) + 2(33)] = -281 \text{ kJ}$$

$$\Delta S^{\circ} = 3(257) + 221 - [3(248) + 2(240)] = -232 \text{ J/K} = -0.232 \text{ kJ/K}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ} = -281 \text{ kJ} - (298 \text{ K}) (-0.232 \text{ kJ/K}) = -212 \text{ kJ}$$

Negative ΔG° indicates that the reaction is spontaneous at 25 °C.

(b) (10 points) **SHOW ALL WORK.** Determine the *equilibrium constant* (K_p) for the above reaction at 600 °C. (600 + 273 = 873 K)

Since ΔH° and ΔS° are relatively independent of temp, their values at 298 K can be used to estimate ΔG° (and K) at another temp. At 873 K:

$$\Delta G = (-281 \text{ kJ}) - (873 \text{ K}) (-0.232 \text{ kJ/K}) = -78.5 \text{ kJ}$$

$$\Delta G = -RT lnK$$

$$lnK = -\Delta G / RT = -(-78.5 \text{ kJ} / \text{mole}) / (8.314 \text{ x } 10^{-3} \text{ kJ/mole} \cdot \text{K}) (873 \text{ K})$$

$$lnK = 10.81$$

$$K = 4.95 \times 10^4$$

6. A Zn/Ag *battery* is constructed based on the following electrochemical cell in which the volume of solution in each half-cell is 0.500 L.

$$Zn_{(s)} | Zn^{2+} (0.100 \text{ M}) | | Ag^{+} (1.500 \text{ M}) | Ag_{(s)}$$

(a) (6 points) Write *balanced chemical equations* for the half-reactions and the overall *cell reaction* occurring in this device. Also, determine the *standard cell potential* (E°_{cell}).

cathode reaction:

$$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$$
 $E^{\circ}_{red} = + 0.80 \text{ V}$

anode reaction:

$$Zn_{(s)} \longrightarrow Zn^{2+}_{(aq)} + 2e^{-}$$
 $E^{\circ}_{oxid} = -(-0.76 \text{ v}) = +0.76 \text{ v}$

cell reaction:

$$Zn(s) + 2 Ag^{+}(aq) \longrightarrow Zn^{2+}(aq) + 2 Ag(s)$$

 $E^{\circ}_{Cell} = 0.80 + 0.76 = 1.56 v$

(b) (10 points) **SHOW ALL WORK.** This battery is pronounced "dead" when 98 % of its chemical capacity is used up (i.e., when the concentration of the major reactant has dropped to 2.00 % of its initial value). Calculate the cell potential (in volts) of the battery at this point.

```
Initially, moles Ag^+ = (0.500 \text{ L}) (1.50 \text{ mole/L}) = 0.750 \text{ moles}

moles Zn^{2+} = (0.500 \text{ L}) (0.100 \text{ mole/L}) = 0.0500 \text{ moles}

moles Ag^+ \text{ remaining} = 2.00 \% \text{ of } 0.750 = (0.020) (0.750) = 0.015 \text{ moles}

[Ag^+] = 0.015 \text{ mole} / 0.500 \text{ L} = 0.0300 \text{ M}

moles Ag^+ \text{ consumed} = 0.750 \text{ moles} - 0.015 \text{ moles} = 0.735 \text{ moles}

moles Zn^{2+} \text{ formed} = (0.735 \text{ mole } Ag^+) (1 \text{ mole } Zn^{2+} / 2 \text{ mole } Ag^+)

= 0.3675 \text{ moles}

moles Zn^{2+} \text{ remaining} = 0.0500 + 0.3675 = 0.4175 \text{ moles}

[Zn^{2+}] = 0.4175 \text{ mole} / 0.500 \text{ L} = 0.835 \text{ M}

Q = [Zn^{2+}] / Ag^+]^2 = 0.835 / (0.0300)^2 = 927.8

E_{Cell} = E^\circ_{Cell} - (0.0592/n) \log Q = 1.56 - (0.0592 / 2) \log(927.8)

E_{Cell} = 1.56 - 0.088 = 1.47 \text{ V}
```

(c) (8 points) **SHOW ALL WORK.** Determine the current (in amps) that this battery could produce if it is operated continuously for 24 hours until it dies (based on the same 98 % definition of "dead"). (*Note*: The cell potentials from parts a and/or b above are not required here!)

```
moles Ag<sup>+</sup> consumed = 0.735 moles

(0.735 \text{ mole Ag}^+) (1 mole e<sup>-</sup> / 1 mole Ag<sup>+</sup>) = 0.735 mole e<sup>-</sup>

(0.735 \text{ mole e}^-) (96,500 coul / mole e<sup>-</sup>) (1 amp·sec / coul) = 7.093 x 10<sup>4</sup> amp·sec

(7.093 \times 10^4 \text{ amp·sec}) / (24 hr) (3600 sec/hr) = 0.82 amps
```

7. (8 points) **SHOW ALL WORK.** A solution containing tungsten (W) ion in an unknown oxidation state was electrolyzed with a current of 1.25 amp for 6.00 hours. During this process, 12.86 g of metallic tungsten was deposited at the cathode. Determine the oxidation state of the tungsten ion in the original solution.

$$W^{n+} + n e^- \longrightarrow W$$
 $n = moles e^- / moles W$ $(1.25 \text{ amp}) (6 \text{ hr}) (3600 \text{ sec/hr}) = 27,000 \text{ amp·sec} = 27,000 \text{ coul}$ $(27,000 \text{ coul}) (1 \text{ mole } e^- / 96,500 \text{ coul}) = 0.280 \text{ mole } e^ (12.86 \text{ g W}) (1 \text{ mole W} / 183.85 \text{ g}) = 0.0700 \text{ mole W}$ $n = 0.280 / 0.0700 = 4$ \therefore oxidation state is W^{4+}

8. (4 points) Arrange the following substances in order of increasing standard molar entropy (S°).

9. (8 points) **SHOW ALL WORK.** Use appropriate electrochemical data to determine the *formation* constant (K_f) for PtCl₄²⁻(aq). *Include balanced chemical equations for all relevant reactions*.

10. (7 points) **SHOW ALL WORK.** Acetone (a common organic liquid) has a normal boiling point of 56.1 °C, a heat of vaporization of 31.3 kJ/mole, and a standard molar entropy [S°(liq)] of 200.4 J/mole·K. Calculate the standard molar entropy [S°(g)] of gaseous acetone (in J/mole·K).

$$\Delta G = \Delta H - T\Delta S = 0$$
 (at equilibrium)
 $\Delta S = \Delta H / T = 31,300 \text{ J} / (56.1 + 273.15) \text{ K} = 95.1 \text{ J/K}$
 $\Delta S = 95.1 \text{ J/K} = S^{\circ}(g) - S^{\circ}(liq) = S^{\circ}(g) - 200.4 \text{ J/mole·K}$
 $S^{\circ}(g) = 296 \text{ J/mole·K}$

Standard Reduction Potentials

Half - Reaction	E° (volts)
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au_{(s)}$. + 1.50
$Cl_{2(g)} + 2e^{-} \longrightarrow 2Cl^{-}(aq)$. + 1.36
$O_{2(g)} + 4 H^{+}_{(aq)} + 4 e^{-} \longrightarrow 2 H_{2}O$	
$Pt^{2+}(aq) + 2e^{-} \longrightarrow Pt(s)$. + 1.18
$AuCl_{4}(aq) + 3e^{-} \longrightarrow Au_{(s)} + 4Cl_{(aq)}$	+ 1.00
$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$. + 0.80
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	
$PtCl_4^{2-}(aq) + 2e^- \longrightarrow Pt(s) + 4Cl^-(aq)$	
$Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$	
$AgCl_{(s)} + e^- \longrightarrow Ag_{(s)} + Cl^-(aq)$	
$Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq) \dots$	
$2 \text{ H}^+(\text{aq}) + 2 \text{ e}^- \longrightarrow \text{H}_2(\text{g})$	0.00
$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$	0.13
$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$	0.23
$PbSO_{4(s)} + 2e^{-} \longrightarrow Pb_{(s)} + SO_{4}^{2-}(aq)$	
$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe_{(s)}$	
$PbO_{(s)} + H_2O + 2e^- \longrightarrow Pb_{(s)} + 2OH^{(aq)}$	
$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn_{(s)}$	
$2 \text{ H}_2\text{O} + 2 \text{ e}^- \longrightarrow \text{H}_2(\text{g}) + 2 \text{ OH}^-(\text{aq}) \dots$	
$Al^{3+}(aq) + 3e^{-} \longrightarrow Al_{(s)}$	
$Na^+(aq) + e^- \longrightarrow Na_{(s)}$	2.21
$K^+(aq) + e^- \longrightarrow K(s)$	2.92

	IA Periodic Table of the Elements											VIIIA						
	(1)	_																(18)
	1																	2
1	Н	IIA											IIIA	IVA	VA	VIA	VIIA	He
	1.0080	(2)											(13)	(14)	(15)	(16)	(17)	4.0026
2	3	4											5	6	7	8	9	10
	Li	Be											В	C	N	О	F	Ne
	6.9410	9.0122											10.811	12.011	14.007	15.999	18.998	20.179
3	11	12											13	14	15	16	17	18
	Na	Mg	IIIB	IVB	VB	VIB	VIIB		. VIIIB .		IB	IIB	Al	Si	P	S	Cl	Ar
	22.990	24.305	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982	28.086	30.974	32.066	35.453	39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098	40.078	44.956	47.880			54.938		58.933	58.690	63.546	65.380	69.723	72.610	74.922	78.960	79.904	83.800
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
	85.468	87.620	88.906	91.224	92.906	95.940	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
	55	56 D	57	72	73	74	75 D	76	77	78 D .	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.20	192.22	195.09	196.97	200.59	204.38	207.20	208.98	208.98	209.99	222.02
7	87 ™	88 D -	89	104	105	106	107											
	Fr 223.02	Ra 226.03	Ac 227.03	Unq 261.11	Unp 262.11	Unh 263.12	Uns 262.12											
	223.02	220.03	227.03	201.11	202.11	203.12	202.12											