Chemistry	10123,	Exam 4
April 22, 20	020	

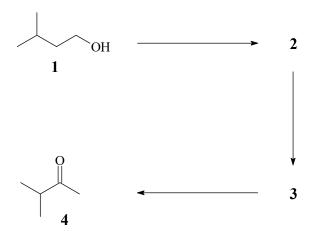
Name:		
	(Please Print)	

1. (7 points) Use the ion-electron method to balance the following redox reaction that occurs in *basic* solution. Write *complete*, *balanced equations* for the individual half-reactions and for the overall net ionic equation. Also, *circle the oxidizing agent*.

$$Al_{(s)} + NO_{2}(aq) \longrightarrow AlO_{2}(aq) + N_{2}H_{4(aq)}$$

Reduction Half Reaction:

Oxidation Half Reaction:

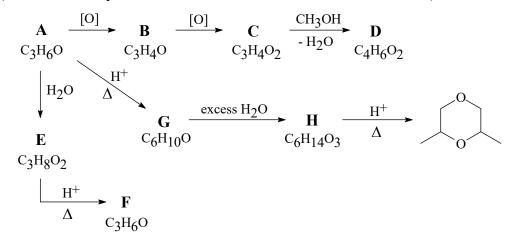

Net Ionic Equation:

2. (4 points) A compound sometimes called "magnesium cerium sulfate" has the formula MgCe(SO₄)₃. Give the oxidation states of all four elements in this compound.

$$Mg =$$
 $Ce =$ $S =$

3. (9 points) Write the systematic name of each compound below its structure. Also, circle any carbon atoms which are *asymmetric (chiral) centers* in these structures.

- 4. (6 points) Write balanced ionic equations for the half-reactions.
 - (a) The *anode* reaction in the electrolysis of *aqueous* K₂SO₄.
 - (b) The *anode* reaction in the electrolysis of *molten* CaBr₂.
 - (c) The *cathode* reaction in the electrolysis of *aqueous* NiCl₂.
- 5. (8 points) Using some of the organic reactions that we have studied, alcohol 1 can be converted into ketone 4 in a 3-step sequence which involves the intermediate formation of compounds 2 and 3. Draw complete structural formulas for compounds 2 and 3 (with all carbons, hydrogens, etc., clearly shown). On the reaction arrows, indicate the necessary reagents and/or reaction conditions that are required for these transformations.


- 6. (8 points) Draw complete structural formulas for each of the following organic compounds.
 - (a) 1-bromo-3-isobutylbenzene
- (b) *p*-nitroaniline

(c) phenyl formate

(d) cis-3-hexene

7.	A <i>battery</i> is constructed based on the following electrochemical cell in which the volume of solution in each half-cell is 200 mL. $Fe_{(s)} Fe^{2+} (1.00 \text{ M}) Au^{3+} (1.00 \text{ M}) Au_{(s)}$
	(a) (6 points) Write balanced chemical equations for the anode, cathode, and overall cell reactions. Anode:
	Cathode:
	Cell:
	(b) (3 points) Determine the <i>initial voltage</i> of this battery.
	(c) (7 points) SHOW ALL WORK. Determine the free energy change for the cell reaction of this battery under standard conditions.
	(d) (10 points) SHOW ALL WORK. Determine the voltage of this battery after it has delivered a current of 0.30 amp for 48 hours.

8. (24 points) An unknown organic compound (A) has the simple molecular formula C₃H₆O and contains an alcohol group. Compound A is found to undergo the reaction sequences summarized below. (Notice that compounds A and F have the same molecular formula.)

Draw *complete structural formulas* for compounds A - H. You may write either fully or partially condensed formulas as long as the molecular structure, including the positions of any functional group(s), is clearly shown.

A: **B**: **C**:

 $\mathbf{D}: \qquad \qquad \mathbf{E}: \qquad \qquad \mathbf{F}:$

G: H:

9. (8 points) In addition to compounds **A** and **F** in question 8 above, there are several **other** *structural isomers* of molecular formula C₃H₆O. Write clear *structural formulas* for C₃H₆O isomers that are good examples of each of the following functional group classes.

ketone alcohol ala

aldehyde ether