| Chemistry 10123, | Exam 4 |
|------------------|--------|
| April 10, 2019   |        |

| Name: |                |
|-------|----------------|
|       | (Please Print) |

1. (10 points) Use the ion-electron method to balance the following redox reaction that occurs in *basic* solution. Write *complete*, *balanced equations* for the individual half-reactions and for the overall net ionic equation. Also, *circle the reducing agent* in this reaction.

$$N_3^-(aq) + S_2O_3^2^-(aq) \longrightarrow SO_3^2^-(aq) + NH_3(aq)$$

**Reduction** Half Reaction:

**Oxidation** Half Reaction:

**Net Ionic** Equation:

2. (3 points) A compound sometimes called "calcium cerium selenate" has the formula CaCe(SeO<sub>4</sub>)<sub>3</sub>. Give the oxidation states of all four elements in this compound.

3. (10 points) **SHOW ALL WORK.** A 100.0 mL sample of a solution of Sn<sup>2+</sup> required 42.15 mL of 0.1100 M KMnO<sub>4</sub> to reach the equivalence point in a titration. Assuming that the main products of the redox reaction are Sn<sup>4+</sup> and Mn<sup>2+</sup>, determine the molarity of the Sn<sup>2+</sup> solution. (*Note*: Your answer must include the *balanced*, *net-ionic equation* for the titration reaction.)

- 4. (6 points) Write *balanced ionic equations* for the half-reactions.
  - (a) The *cathode* reaction in the electrolysis of *aqueous* KNO<sub>3</sub>.
  - (b) The *anode* reaction in the electrolysis of *molten* Al<sub>2</sub>O<sub>3</sub>.
  - (c) The *anode* reaction in the electrolysis of *aqueous* Na<sub>2</sub>SO<sub>4</sub>.
- 5. Consider the following reaction and the related thermodynamic data below.

$$3 \text{ SO}_{2(g)} + 2 \text{ NO}_{2(g)} \longrightarrow 3 \text{ SO}_{3(g)} + \text{N}_2\text{O}_{(g)}$$

|                    | Standard Heat of Formation (ΔH° <sub>f</sub> ) in kJ/mole | Standard Entropy<br>(S°) in J/mole·K |
|--------------------|-----------------------------------------------------------|--------------------------------------|
| $NO_{2(g)}$        | 33                                                        | 240                                  |
| $N_2O_{(g)}$       | 82                                                        | 221                                  |
| $SO_{2(g)}$        | - 297                                                     | 248                                  |
| SO <sub>3(g)</sub> | - 396                                                     | 257                                  |

(a) (10 points) **SHOW ALL WORK.** Is the above reaction spontaneous at 25 °C? Determine the appropriate thermodynamic quantity that is required in order to answer this question.

(b) (10 points) **SHOW ALL WORK.** Determine the *equilibrium constant* (K<sub>p</sub>) for the above reaction at 600 °C.

| 6. | A Zn/Ag <i>battery</i> is constructed based on the following electrochemical cell in which the volume of solution in each half-cell is 0.500 L.                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
|    | $Zn_{(s)}   Zn^{2+} (0.100 \text{ M})     Ag^{+} (1.500 \text{ M})   Ag_{(s)}$                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (6 points) Write <i>balanced chemical equations</i> for the half-reactions and the overall <i>cell reaction</i> occurring in this device. Also, determine the <i>standard cell potential</i> ( $E^{\circ}_{cell}$ ).                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|    | cathode reaction:  anode reaction:                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|    | cell reaction:                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (b) (10 points) <b>SHOW ALL WORK.</b> This battery is pronounced "dead" when 98 % of its chemical capacity is used up (i.e., when the concentration of the major reactant has dropped to 2.00 % of its initial value). Calculate the cell potential (in volts) of the battery at this point.          |  |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
|    | (c) (8 points) <b>SHOW ALL WORK.</b> Determine the current (in amps) that this battery could produce if it is operated continuously for 24 hours until it dies (based on the same 98 % definition of "dead"). ( <i>Note</i> : The cell potentials from parts a and/or b above are not required here!) |  |  |  |  |  |  |  |  |  |  |  |  |



8. (4 points) Arrange the following substances in order of increasing standard molar entropy (S°).



9. (8 points) **SHOW ALL WORK.** Use appropriate electrochemical data to determine the *formation* constant (K<sub>f</sub>) for PtCl<sub>4</sub><sup>2-</sup>(a<sub>Q</sub>). Include balanced chemical equations for all relevant reactions.

10. (7 points) **SHOW ALL WORK.** Acetone (a common organic liquid) has a normal boiling point of 56.1 °C, a heat of vaporization of 31.3 kJ/mole, and a standard molar entropy [S°(liq)] of 200.4 J/mole·K. Calculate the standard molar entropy [S°(g)] of gaseous acetone (in J/mole·K).

## **Standard Reduction Potentials**

| Half - Reaction                                                                                                | E° (volts) |
|----------------------------------------------------------------------------------------------------------------|------------|
| $Au^{3+}(aq) + 3e^{-} \longrightarrow Au_{(s)}$                                                                | . + 1.50   |
| $Cl_{2(g)} + 2e^{-} \longrightarrow 2Cl^{-}(aq)$                                                               | . + 1.36   |
| $O_{2(g)} + 4 H^{+}_{(aq)} + 4 e^{-} \longrightarrow 2 H_{2}O$                                                 |            |
| $Pt^{2+}(aq) + 2e^{-} \longrightarrow Pt(s)$                                                                   | . + 1.18   |
| $AuCl_{4}(aq) + 3e^{-} \longrightarrow Au_{(s)} + 4Cl_{(aq)}$                                                  | + 1.00     |
| $Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$                                                                     | . + 0.80   |
| $Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$                                                              |            |
| $PtCl_4^{2-}(aq) + 2e^- \longrightarrow Pt(s) + 4Cl^-(aq)$                                                     |            |
| $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$                                                                   |            |
| $AgCl_{(s)} + e^- \longrightarrow Ag_{(s)} + Cl^-(aq)$                                                         |            |
| $Cu^{2+}(aq) + e^{-} \longrightarrow Cu^{+}(aq) \dots$                                                         |            |
| $2 \text{ H}^+(\text{aq}) + 2 \text{ e}^- \longrightarrow \text{H}_2(\text{g})$                                | 0.00       |
| $Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$                                                                   | 0.13       |
| $Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$                                                                   | 0.23       |
| $PbSO_{4(s)} + 2e^{-} \longrightarrow Pb_{(s)} + SO_{4}^{2-}(aq)$                                              |            |
| $Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$                                                                   |            |
| $PbO_{(s)} + H_2O + 2e^- \longrightarrow Pb_{(s)} + 2OH^{(aq)}$                                                |            |
| $Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn_{(s)}$                                                                |            |
| $2 \text{ H}_2\text{O} + 2 \text{ e}^- \longrightarrow \text{H}_2(\text{g}) + 2 \text{ OH}^-(\text{aq}) \dots$ |            |
| $Al^{3+}(aq) + 3e^{-} \longrightarrow Al_{(s)}$                                                                |            |
| $Na^+(aq) + e^- \longrightarrow Na_{(s)}$                                                                      | 2.21       |
| $K^+(aq) + e^- \longrightarrow K(s)$                                                                           | 2.92       |

|   | IA Periodic Table of the Elements v |                  |                     |               |                     |               |                     |                |           | VIIIA            |         |            |           |           |                 |                  |         |                |
|---|-------------------------------------|------------------|---------------------|---------------|---------------------|---------------|---------------------|----------------|-----------|------------------|---------|------------|-----------|-----------|-----------------|------------------|---------|----------------|
|   | (1)                                 | _                |                     |               |                     |               |                     |                |           |                  |         |            |           |           |                 |                  |         | (18)           |
|   | 1                                   |                  |                     |               |                     |               |                     |                |           |                  |         |            |           |           |                 |                  |         | 2              |
| 1 | H                                   | IIA              |                     |               |                     |               |                     |                |           |                  |         |            | IIIA      | IVA       | VA              | VIA              | VIIA    | He             |
|   | 1.0080                              | (2)              |                     |               |                     |               |                     |                |           |                  |         |            | (13)      | (14)      | (15)            | (16)             | (17)    | 4.0026         |
|   | 3                                   | 4                |                     |               |                     |               |                     |                |           |                  |         |            | 5         | 6         | 7               | 8                | 9       | 10             |
| 2 | Li                                  | Be               |                     |               |                     |               |                     |                |           |                  |         |            | В         | C         | N               | O                | F       | Ne             |
|   | 6.9410                              | 9.0122           |                     |               |                     |               |                     |                |           |                  |         |            | 10.811    | 12.011    | 14.007          | 15.999           | 18.998  | 20.179         |
|   | 11                                  | 12               |                     |               |                     |               |                     |                |           |                  |         |            | 13        | 14        | 15              | 16               | 17      | 18             |
| 3 |                                     | Mg               | IIIB                | IVB           | VB                  | VIB           | VIIB                |                | . VIIIB . |                  | IB      | IIB        | Al        | Si        | P               | S                | Cl      | Ar             |
|   | 22.990                              | 24.305           | (3)                 | (4)           | (5)                 | (6)           | (7)                 | (8)            | (9)       | (10)             | (11)    | (12)       | 26.982    | 28.086    | 30.974          | 32.066           | 35.453  | 39.948         |
|   | 19                                  | 20               | 21                  | 22            | 23                  | 24            | 25                  | 26             | 27        | 28               | 29      | 30         | 31        | 32        | 33              | 34               | 35      | 36             |
| 4 |                                     | Ca               | Sc                  | Ti            | V                   | Cr            | Mn                  | Fe             | Co        | Ni               | Cu      | Zn         | Ga        | Ge        | As              | Se               | Br      | Kr             |
|   | 39.098                              | 40.078           | 44.956              | 47.880        |                     |               | 54.938              |                | 58.933    | 58.690           | 63.546  | 65.380     | 69.723    | 72.610    | 74.922          | 78.960           | 79.904  | 83.800         |
|   | 37                                  | 38<br>G          | 39                  | 40            | 41                  | 42            | 43                  | 44<br><b>D</b> | 45<br>D1  | 46               | 47      | 48         | 49        | 50        | 51              | 52               | 53<br>- | 54             |
| 5 | ~                                   | Sr               | Y                   | Zr            | Nb                  | Mo            | Tc                  | Ru             | Rh        | Pd               | Ag      | Cd         | In        | Sn        | Sb              | Te               | 100.00  | Xe             |
|   | 85.468                              | 87.620           | 88.906              | 91.224        | 92.906              | 95.940        | 98.907              | 101.07         | 102.91    | 106.42           | 107.87  | 112.41     | 114.82    | 118.71    | 121.75          | 127.60           | 126.90  | 131.29         |
|   | 55<br>Cl-                           | 56               | 57<br>T -           | 72<br>TTC     | 73<br>Tr -          | 74            | 75<br>D -           | 76             | 77<br>T   | 78<br><b>D</b> 4 | 79<br>• | 80<br>TT - | 81<br>TCI | 82<br>D1- | 83<br><b>D:</b> | 84<br>D -        | 85      | 86<br><b>D</b> |
| 6 | <b>Cs</b>                           | Ba               | <b>La</b><br>138.91 | Hf            | <b>Ta</b><br>180.95 | W             | <b>Re</b><br>186.21 | Os             | Ir        | Pt               | Au      | Hg         | Tl        | Pb        | Bi              | <b>Po</b> 208.98 | At      | Rn             |
|   |                                     | 137.33           |                     | 178.49        |                     | 183.85        |                     | 190.20         | 192.22    | 195.09           | 196.97  | 200.59     | 204.38    | 207.20    | 208.98          | 208.98           | 209.99  | 222.02         |
| 7 | 87<br>T                             | 88<br>D.a        | 89                  | 104           | 105                 | 106           | 107                 |                |           |                  |         |            |           |           |                 |                  |         |                |
|   | Fr<br>223.02                        | <b>Ra</b> 226.03 | <b>Ac</b> 227.03    | Unq<br>261.11 | Unp<br>262.11       | Unh<br>263.12 | Uns<br>262.12       |                |           |                  |         |            |           |           |                 |                  |         |                |
|   | 223.02                              | 220.03           | 221.03              | 201.11        | 202.11              | 200.12        | 202.12              |                |           |                  |         |            |           |           |                 |                  |         |                |