In all of the "SHOW ALL WORK" questions, include <u>balanced, net-ionic equations</u> for all relevant chemical reactions and clearly indicate which ones are considered as equilibrium reactions. <u>Without the appropriate chemical reaction(s), no partial credit will be given</u>! Clearly state and justify any assumptions you make. Some <u>selected equilibrium constants</u> that are required in certain problems are listed on the last page of this exam.

1. (10 points) Write a *balanced chemical equation* for the <u>equilibrium</u> reaction that corresponds to each of the following equilibrium constants. *Indicate the proper phase (s, aq, etc.) of each species*.

[e. g., K_W for water would be: $2 H_2O_{(1)} = H_3O^+_{(aq)} + OH^-_{(aq)}$]

- (a) K_b for $H_2PO_3^ H_2PO_3^-(aq) + H_2O \longrightarrow H_3PO_3(aq) + OH^-(aq)$
- (b) K_{sp} for $Mg_3(PO_4)_2$ $Mg_3(PO_4)_{2(s)} \longrightarrow 3 Mg^{2+}(aq) + 2 PO_4^{3-}(aq)$
- (c) K_b for H_2NNH_2 $H_2NNH_2(aq) + H_2O \longrightarrow H_2NNH_3^+(aq) + OH^-(aq)$
- (d) K_f for $Cr(C_2O_4)_3^{3-}$ $Cr^{3+}(aq) + 3C_2O_4^{2-}(aq) \longrightarrow Cr(C_2O_4)_3^{3-}(aq)$
- (e) K_a for $Al(H_2O)_6^{3+}$ $Al(H_2O)_6^{3+} \longrightarrow H^+(aq) + Al(H_2O)_5(OH)^{2+}(aq)$
- 2. (10 points) **SHOW ALL WORK.** An unknown weak base (call it RNH₂) is dissolved in enough water to make 50.0 mL of solution. This solution is then titrated with 0.125 M HNO₃ and 40.0 mL of the HNO₃ solution is required to reach the equivalence point. Using a pH meter, the pH of the solution at the equivalence point is found to be 2.94. Determine the pK_b value of the unknown base.

At the equivalence point, all RNH₂ has been neutralized to RNH₃⁺.

moles RNH₃⁺ produced = moles HNO₃ added = (0.040 L) (0.125 mole/L) = 0.00500 mole total volume = 50.0 mL + 40.0 mL = 90.0 mL = 0.0900 L M of RNH₃⁺ = 0.00500 mole / 0.0900 L = 0.0556 M RNH₃⁺ = H⁺ + RNH₂ K_a = [H⁺] [RNH₂] / [RNH₃⁺] \approx (10^{-2.94})² / (0.0556) \approx 2.37 x 10⁻⁵ pK_a = 4.63 pK_b = 14.00 - pK_a = 9.37 3. (8 points) Indicate whether an aqueous solution of each of the following substances is acidic (A), basic (B), or neutral (N).

HOCN A

NaClO₂ B (CH₃)₂NH₂Br A Ba(NO₃)₂ N

4. (10 points) SHOW ALL WORK. Indium sulfide, In_2S_3 (molar mass = 326) is so insoluble that a 2.0-L volume of a saturated solution contains only 3.4 *picograms* of In_2S_3 . Determine K_{sp} for In_2S_3 . (In case you have forgotten the metric system, *pico* = 10⁻¹²!)

$$\begin{aligned} \ln_2 S_{3(s)} &= 2 \ln^{3+}(aq) + 3 S^{2-}(aq) \\ K_{sp} &= [\ln^{3+}]^2 [S^{2-}]^3 = (2x)^2 (3x)^3 = 108 x^5 \\ x &= (3.4 \times 10^{-12} \text{ g} / 2.0 \text{ L}) (1 \text{ mole} / 326 \text{ g}) = 5.22 \times 10^{-15} \text{ M} \\ K_{sp} &= 108 (5.22 \times 10^{-15})^5 = 4.2 \times 10^{-70} \end{aligned}$$

5. (7 points) SHOW ALL WORK. Determine the numerical value of the equilibrium constant (K_c) for the following reaction.

$$\begin{array}{rcl} Cr(OH)_{3(s)} &+ & 3 \operatorname{HCO}_{2}H_{(aq)} & \Longrightarrow & Cr^{3+}_{(aq)} &+ & 3 \operatorname{HCO}_{2}^{-}_{(aq)} &+ & 3 \operatorname{H2O}_{2}^{-}_{(aq)} \\ Cr(OH)_{3(s)} & \Longrightarrow & Cr^{3+}_{(aq)} &+ & 3 \operatorname{OH}^{-}_{(aq)} & K_{sp} \\ 3 \left\{ \operatorname{HCO}_{2}H_{(aq)} & \Longrightarrow & \operatorname{HCO}_{2}^{-}_{(aq)} &+ & \operatorname{H}^{+} \right\} & (K_{a})^{3} \\ 3 \left\{ \operatorname{H}^{+}_{(aq)} &+ & \operatorname{OH}^{-}_{(aq)} & \Longrightarrow & \operatorname{H2O}_{2} \right\} & (1/K_{w})^{3} \\ K_{c} &= & K_{sp} \left(K_{a} \right)^{3} \left(1 / K_{w} \right)^{3} \\ K_{c} &= & (6.3 \times 10^{-31}) \left(1.80 \times 10^{-4} \right)^{3} / \left(1.00 \times 10^{-14} \right)^{3} = & 3.67 \end{array}$$

6. (10 points) SHOW ALL WORK. By doing the appropriate calculation, determine if a precipitate will form when 75.0 mL of an NaOH solution with pH = 11.40 is mixed with 125 mL of a 0.020 M MgCl₂ solution. Identify the precipitate, if any.

The possible precipitate is Mg(OH)₂ for which $K_{sp} = 2.06 \times 10^{-13}$.

$$Mg(OH)_{2(s)} \longrightarrow Mg^{2+}(aq) + 2 OH^{-}(aq)$$

Determine Q and compare to K_{sp}.

NaOH solution: pOH = 14.00 - pH = 2.60 [OH⁻] =
$$10^{-2.60}$$
 = 2.51 x 10^{-3} M moles OH⁻ = (0.075 L) (2.51 x 10^{-3} mole/L) = 1.88×10^{-4} mole after mixing: [OH = (1.88×10^{-4} mole) / (0.200 L) = 9.41×10^{-4} M moles Mg²⁺ = (0.125 L) (0.20 mole/L) = 2.50×10^{-3} moles [Mg²⁺] = (2.50×10^{-3} moles) / (0.200 L) = 0.0125 M Q = [Mg²⁺] [OH⁻]² = [0.0125] [9.41×10^{-4}]² = 1.18×10^{-8} Q > K_{sp} ∴ a precipitate of Mg(OH)₂ will form!

7. In a Gen Chem lab practical, you are given four labeled bottles that contain 500 mL each of the following solutions.

A: 0.300 M KOH	B : 0.300 M KNO ₂	C: 0.300 M HOBr	D : 0.300 M HBr
pH = 13.48	pH = 8.41	pH = 4.54	pH = 0.52

- (a) (7 points) Determine the pH of each of the above solutions and fill in the blanks accordingly. (*No partial credit will be given here and work need not be shown*.)
- (b) (8 points) The main task of the lab practical is to prepare a *buffer solution* with a pH of 4.00. Think about which *two* solutions you would mix together to accomplish this. (Fill in the blanks with the correct letters.) I would mix the entire 500 mL of solution B with a smaller volume of solution D. *Briefly explain* your answers by giving specific reasons for selecting each of the two solutions. Include a *balanced chemical equation* for any reaction that occurs *upon mixing* your chosen solutions.

neutralization Rx: $H^+ + NO_2^- \longrightarrow HNO_2$

The reaction of H⁺ (from the strong acid HBr) with excess NO₂⁻ will produce some of the conjugate acid HNO₂, thus yielding an HNO₂ / NO₂⁻ buffer solution! This buffer will have a pH comparable to pK_a for the weak acid HNO₂ ($pK_a = 3.34$). Using all of solution B with a smaller quantity of HBr (in moles) will insure that some of the NO₂⁻ remains along with HNO₂.

(c) (10 points) **SHOW ALL WORK.** Determine the volume (in mL) of the solution you selected in part (b) that must be added to 500 mL of the other solution to make the buffer with pH = 4.00.

neutralization Rx: $H^+ + NO_2^- \longrightarrow HNO_2$ initial moles $NO_2^- = (0.500 \text{ L}) (0.30 \text{ mole/L}) = 0.15 \text{ moles}$ let x = moles HBr (i.e., H^+) added after reaction: moles $HNO_2 = x$ and moles $NO_2^- = 0.15 \cdot x$ buffer solution: $HNO_2 \implies H^+ + NO_2^ K_a = [H^+][NO_2^-] / [HNO_2] = 4.6 \times 10^{-4}$ $[H^+] = K_a [HNO_2] / [NO_2^-] = K_a (moles HNO_2) / (moles NO_2^-]$ $10^{-4.00} = (4.6 \times 10^{-4}) (x) / (0.15 \cdot x)$ rearrange and solve for x! $x = 0.0268 \text{ mole } H^+$ (0.0268 mole HBr) (1000 mL / 0.300 moles) = 89.3 mL 8. (10 points) **SHOW ALL WORK.** A 3.75-g sample of codeine (a weak base with a pK_b of 5.79) was combined with 3.00 mL of 1.50 M HCl and the resulting solution was diluted to 500 mL. The measured pH of this solution was 8.46. Determine the molar mass of codeine.

let x = moles of base B (codeine) moles H⁺ added = moles of B neutralized = moles HB⁺ produced = (3.00 mL) (1.50 moles / 1000 mL) = 0.00450 mole moles B remaining = x - 0.00450 and moles HB⁺ produced = 0.00450 the resulting solution is a buffer in which the major equilibrium is HB⁺ \longrightarrow H⁺ + B pK_a = 14 - pK_b = 14 - 5.79 = 8.21 [H⁺] = K_a (moles HB⁺) / (moles B) 10^{-8.46} = (10^{-8.21}) (0.00450) / (x - 0.00450) x = 0.0125 moles B

molar mass = 3.75 g / 0.0125 mole = 300 g/mole

9. SHOW ALL WORK. Determine the molar solubility of Ag₂CrO₄ in each of following solutions.
(a) (5 points) 0.20 M AgNO_{3(aq)}

 $\begin{array}{rcl} Ag_2 CrO_4(s) & =& 2 \ Ag^+(aq) \ + \ CrO_4^{2-}(aq) \\ \\ \mbox{let } x \ = \ molar \ solubility \ of \ Ag_2 CrO_4 \\ \\ K_{sp} \ = \ 1.12 \ x \ 10^{-12} \ = \ [Ag^+]^2 \ [CrO_4^{2-}] \ = \ (x \ + \ 0.20)^2 \ (x) \\ \\ \ since \ K_{sp} \ is \ very \ small, \ assume \ x \ < \ 0.20 \\ \\ \ 1.12 \ x \ 10^{-12} \ \approx \ (0.20)^2 \ (x) \\ \\ \ x \ \approx \ 2.8 \ x \ 10^{-11} \ M & (assumption \ is \ OK) \end{array}$

(b) (10 points) 0.20 M KSCN(aq)

 $\begin{array}{rcl} \mathsf{K}_{sp} & \mathsf{Ag_2CrO_4(s)} & \Longrightarrow & 2\,\mathsf{Ag^+(aq)} \, + \, \mathsf{CrO_4^{2-}(aq)} \\ (\mathsf{K}_f)^2 & 2\,[\,\mathsf{Ag^+(aq)} \, + \, 2\,\mathsf{SCN^-}(aq) \, \Longrightarrow \, \mathsf{Ag(SCN)_2^-}(aq)\,] \\ \hline \mathsf{net}\,\mathsf{Rx}: & \mathsf{Ag_2CrO_4(s)} \, + \, 4\,\mathsf{SCN^-}(aq) \, \Longrightarrow \, 2\,\mathsf{Ag(SCN)_2^-}(aq) \, + \, \mathsf{S^{2-}}(aq) \\ \mathsf{K}_{net} \, = \, \mathsf{K}_{sp}\,(\mathsf{K}_f)^2 \, = \, (1.12\,x\,10^{-12})\,(1.2\,x\,10^{10})^2 \, = \, 1.61\,x\,10^8 \end{array}$

Since K_{net} is very large, the net reaction essentially goes to completion. Thus, Ag₂CrO₄ will keep reacting (i.e., dissolving) until all of the SCN⁻ is consumed.

- \therefore molar solubility = (0.20 mole SCN⁻/L) (1 mole Ag₂CrO₄ / 4 mole SCN⁻)
 - = 0.050 mole/L

	IA																	VIIIA
	(1) 1																	(18) 2
1	H 1.0080	IIA (2)											IIIA (13)	IVA (14)	VA (15)	VIA (16)	VIIA (17)	He 4.0026
	3	4											5	6	7	8	9	10
2		Be 9.0122											B 10.811	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.179
	11	12											13	12.011	14.007	16	17	18
3		Mg	IIIB	IVB	VB	VIB	VIIB		. VIIIB .		IB	IIB	Al	Si	P	S	Cl	Ar
	22.990 19	24.305 20	(3) 21	(4) 22	(5) 23	(6) 24	(7) 25	(8) 26	(9) 27	(10) 28	(11) 29	(12) 30	26.982 31	28.086 32	30.974 33	32.066 34	35.453 35	39.948 36
4		Ca 40.078	Sc 44.956	Ti	V 50.942	Cr	Mn	Fe 55.847	Co 58.933	Ni 58.690	Cu	Zn	Ga 69.723	Ge 72.610	As 74.922	Se 78.960	Br 79.904	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb 85.468	Sr 87.620	Y 88.906	Zr 91.224	Nb 92.906	Mo 95.940	Tc 98.907	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd 112.41	In 114.82	Sn 118.71	Sb 121.75	Te 127.60	I 126.90	Xe 131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs 132.91	Ba 137.33	La 138.91	Hf 178.49	Ta 180.95	W 183.85	Re 186.21	Os 190.20	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.38	Pb 207.20	Bi 208.98	Po 208.98	At 209.99	Rn 222.02
	87	88	89	104	105	106	107											
7	Fr 223.02	Ra 226.03	Ac 227.03	Unq 261.11	Unp 262.11	Unh 263.12	Uns 262.12											

<u>Substance</u>	Equilibrium Constant(s	
СН3СО2Н	K _a = 1.75×10^{-5}	
HCO ₂ H	K _a = 1.80×10^{-4}	
HOBr	K _a = 2.80×10^{-9}	
HNO ₂	K _a = 4.60×10^{-4}	
H ₂ CO ₃	K _{a1} = 4.3×10^{-7}	$K_{a2} = 5.6 \times 10^{-11}$
H ₂ S	K _{a1} = 8.9×10^{-8}	$K_{a2} = 1.0 \times 10^{-19}$
NH3	K _b = 1.76×10^{-5}	
CH ₃ NH ₂	K _b = 4.42×10^{-4}	
HONH ₂	K _b = 9.12×10^{-9}	
Mg(OH) ₂	K _{sp} = 2.06×10^{-13}	
Cd(OH) ₂	$K_{sp} = 7.2 \times 10^{-15}$	
Cr(OH)3	K _{sp} = 6.3×10^{-31}	
Cu(OH) ₂	$K_{sp} = 2.2 \times 10^{-20}$	
Au(OH)3	K _{sp} = 5.5×10^{-46}	
Ag ₂ S	K _{sp} = 6.0×10^{-51}	
Ag ₂ CrO ₄	$K_{sp} = 1.12 \times 10^{-12}$	
CdCO3	$K_{sp} = 1.0 \times 10^{-12}$	
Cd(CN) ₄ ²⁻	K _f = 3.0×10^{18}	
$Cu(NH_3)_4^{2+}$	K _f = 1.7×10^{13}	
Ag(CN)2 ⁻	K _f = $1.0 \ge 10^{21}$	
Ag(SCN)2 ⁻	K _f = 1.2×10^{10}	
Cu(CN)4 ²⁻	K _f = 1.0×10^{29}	