Chemistry	10123,	Exam	3
March 20,	2019		

Name:	
	(Please Print)

In all of the "SHOW ALL WORK" questions, include <u>balanced</u>, <u>net-ionic equations</u> for all relevant chemical reactions and clearly indicate which ones are considered as equilibrium reactions. <u>Without the appropriate chemical reaction(s)</u>, no partial credit will be given! Clearly state and justify any assumptions you make. Some <u>selected equilibrium constants</u> that are required in certain problems <u>are listed on the last page</u> of this exam.

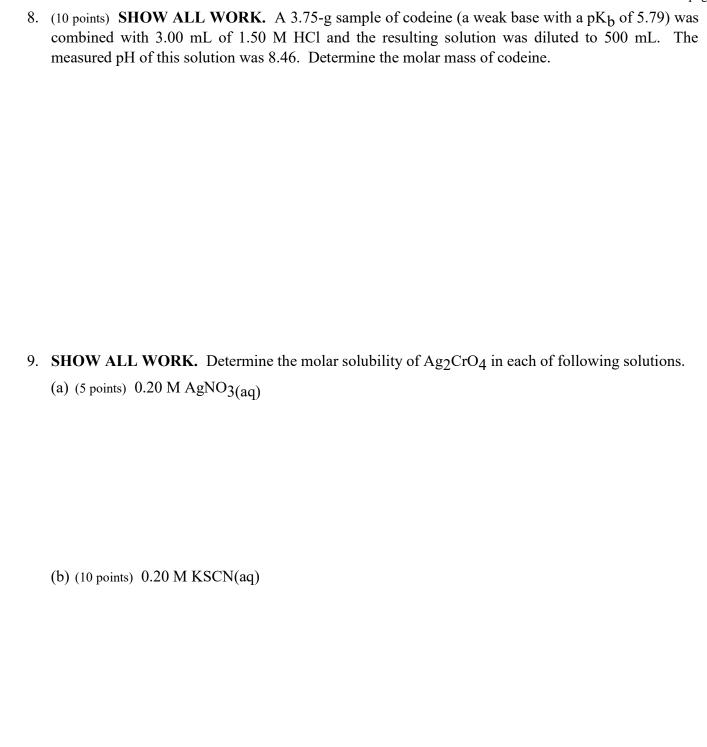
1. (10 points) Write a *balanced chemical equation* for the <u>equilibrium</u> reaction that corresponds to each of the following equilibrium constants. *Indicate the proper phase (s, aq, etc.) of each species*.

[e. g.,
$$K_W$$
 for water would be: $2 H_2 O_{(1)} = H_3 O^+_{(aq)} + OH^-_{(aq)}$]

- (a) K_b for H₂PO₃
- (b) K_{sp} for $Mg_3(PO_4)_2$
- (c) K_b for H₂NNH₂
- (d) K_f for $Cr(C_2O_4)_3^{3-}$
- (e) K_a for $Al(H_2O)_6^{3+}$
- 2. (10 points) **SHOW ALL WORK.** An unknown weak base (call it RNH₂) is dissolved in enough water to make 50.0 mL of solution. This solution is then titrated with 0.125 M HNO₃ and 40.0 mL of the HNO₃ solution is required to reach the equivalence point. Using a pH meter, the pH of the solution at the equivalence point is found to be 2.94. Determine the pK_b value of the unknown base.

3.	(8 points)	Indicate	whether a	n aqueous	solution	of ea	ach of	the	following	substances	is acidio	: (A),
	basic (B),	, or neutra	ıl (N).									
	NaClo	02	(C	H3)2NH2E	3r	_	Ba(N	IO ₃)	2	HOCN	1	_

4. (10 points) **SHOW ALL WORK.** Indium sulfide, In₂S₃ (molar mass = 326) is so insoluble that a 2.0-L volume of a saturated solution contains only 3.4 *pico*grams of In₂S₃. Determine K_{sp} for In₂S₃. (In case you have forgotten the metric system, *pico* = 10⁻¹²!)


5. (7 points) **SHOW ALL WORK.** Determine the numerical value of the equilibrium constant (K_c) for the following reaction.

$$Cr(OH)_{3(s)} + 3 HCO_2H_{(aq)} \longrightarrow Cr^{3+}_{(aq)} + 3 HCO_2^{-}_{(aq)} + 3 H_2O$$

6. (10 points) **SHOW ALL WORK.** By doing the appropriate calculation, determine if a precipitate will form when 75.0 mL of an NaOH solution with pH = 11.40 is mixed with 125 mL of a 0.020 M MgCl₂ solution. Identify the precipitate, if any.

In a Gen Chem lab profollowing solutions.	actical, you are given four	r labeled bottles that con	tain 500 mL each of the
A : 0.300 M KOH	B : 0.300 M KNO ₂	C: 0.300 M HOBr	D : 0.300 M HBr
pH =	pH =	pH =	pH =
	e the pH of each of the above given here and work need		blanks accordingly. (No
Think about which with the correct lette volume of solution selecting each of the	task of the lab practical atwo solutions you would rest.) I would mix the entireation. Briefly east two solutions. Include a group chosen solutions.	nix together to accomplishe 500 mL of solution	h this. (Fill in the blanks with a smaller iving specific reasons for
	ALL WORK. Determine added to 500 mL of the or	· · · · · · · · · · · · · · · · · · ·	<u> </u>

7.

	IA (1)																	VIIIA
	1																	(18) 2
1	H 1.0080	IIA (2)											IIIA (13)	IVA (14)	VA (15)	VIA (16)	VIIA (17)	He 4.0026
	3	4											5	6	7	8	9	10
2		Be 9.0122											B 10.811	C	N 14.007	O 15.999	F 18.998	Ne 20.179
	11	12											13	14	15	16	17	18
3	Na 22.990	Mg 24.305	IIIB (3)	IVB (4)	VB (5)	VIB (6)	VIIB (7)	(8)	. VIIIB .	(10)	IB (11)	IIB (12)	Al 26.982	Si 28.086	P 30.974	S 32.066	Cl 35.453	Ar 39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K 39.098	Ca 40.078	Sc 44.956	Ti 47.880	V 50.942	Cr 51.996	Mn 54.938	Fe 55.847	Co 58.933	Ni 58.690	Cu 63.546	Zn 65.380	Ga 69.723	Ge 72.610	As 74.922	Se 78.960	Br 79.904	Kr 83.800
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb 85.468	Sr 87.620	Y 88.906	Zr 91.224	Nb 92.906	Mo 95.940	Tc 98.907	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd	In 114.82	Sn 118.71	Sb	Te	I 126.90	Xe 131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba 137.33	La 138.91	Hf 178.49	Ta 180.95	W 183.85	Re 186.21	Os 190.20	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.38	Pb 207.20	Bi 208.98	Po 208.98	At 209.99	Rn 222.02
	87	88	89	104	105	106	107	190.20	192.22	195.09	190.97	200.59	204.36	201.20	200.90	200.90	209.99	222.02
7	Fr 223.02	Ra	Ac	Unq 261.11	Unp	Unh	Uns 262.12											

Substance	Equilibrium Constant(s	<u>s)</u>
CH ₃ CO ₂ H	$K_a = 1.75 \times 10^{-5}$	
НСО2Н	$K_a = 1.80 \times 10^{-4}$	
HOBr	$K_a = 2.80 \times 10^{-9}$	
HNO ₂	$K_a = 4.60 \times 10^{-4}$	
H ₂ CO ₃	$K_{a1} = 4.3 \times 10^{-7}$	$K_{a2} = 5.6 \times 10^{-11}$
H ₂ S	$K_{a1} = 8.9 \times 10^{-8}$	$K_{a2} = 1.0 \times 10^{-19}$
NH3	$K_b = 1.76 \times 10^{-5}$	
CH ₃ NH ₂	$K_b = 4.42 \times 10^{-4}$	
HONH ₂	$K_b = 9.12 \times 10^{-9}$	
Mg(OH)2	$K_{sp} = 2.06 \times 10^{-13}$	
Cd(OH) ₂	$K_{sp} = 7.2 \times 10^{-15}$	
Cr(OH)3	$K_{sp} = 6.3 \times 10^{-31}$	
Cu(OH) ₂	$K_{sp} = 2.2 \times 10^{-20}$	
Au(OH)3	$K_{sp} = 5.5 \times 10^{-46}$	
	$K_{sp} = 6.0 \times 10^{-51}$	
Ag ₂ CrO ₄	$K_{sp} = 1.12 \times 10^{-12}$	
	$K_{sp} = 1.0 \times 10^{-12}$	
Cd(CN)4 ²⁻	$K_f = 3.0 \times 10^{18}$	
Cu(NH ₃) ₄ ²⁺	$K_f = 1.7 \times 10^{13}$	
Ag(CN)2 ⁻	$K_f = 1.0 \times 10^{21}$	
Ag(SCN)2 ⁻	$K_f = 1.2 \times 10^{10}$	
Cu(CN) ₄ ²	$K_f = 1.0 \times 10^{29}$	