Answer Key

Chemistry 10123, **Exam 2** February 26, 2020

- SHOW ALL WORK. Include balanced chemical equations for any <u>equilibrium</u> reactions and clearly state any assumptions where appropriate. The K_{sp} value for cobalt(II) hydroxide, Co(OH)₂, is 1.0 x 10⁻¹⁵. The formation constant (K_f) for the cobalt(II)-ammonia complex ion, [Co(NH₃)₆]²⁺, is 5.0 x 10⁴.
 - (a) (10 points) Calculate the pH of a *saturated solution* of Co(OH)₂ in water.

 $Co(OH)_{2(s)} = Co^{2+}(aq) + 2 OH^{-}(aq)$ $K_{sp} = [Co^{2+}] [OH^{-}]^{2} \quad \text{let } x = \text{molar solubility}$ $K_{sp} = 1.0 \times 10^{-15} = (x) (2x)^{2} = 4x^{3}$ $x = 6,30 \times 10^{-6} \text{ M}$ $[OH^{-}] = 2x = 1.26 \times 10^{-5} \text{ M}$ $pOH = -\log(1.26 \times 10^{-5}) = 4.90 \qquad pH = 9.10$

(b) (8 points) Calculate the *molar solubility* of Co(OH)₂ in a 0.50 M NaOH solution.

$$\begin{split} &\mathsf{K}_{sp} = [\mathsf{Co}^{2+}] \, [\mathsf{OH}^-]^2 & \text{let } x = \text{molar solubiity} \\ &[\mathsf{Co}^{2+}] = x & [\mathsf{OH}^-] = 0.50 + 2x & (\mathsf{OH}^- \text{ is the common ion}) \\ &1.0 \; x \; 10^{-15} \; = \; (x) \; (0.50 + 2x)^2 & (\text{assume } 2x << 0.50 \text{ because K is very small}) \\ &1.0 \; x \; 10^{-15} \; \approx \; (x) \; (0.50)^2 \\ &x \; \approx \; 4.0 \; x \; 10^{-15} \; \mathsf{M} \qquad (\text{assumption is OK!}) \end{split}$$

(b) (10 points)	Calculate the <i>molar solubility</i> of Co(OH) ₂ in a 0.5	0 M NH ₃ solution.
-----------------	---	-------------------------------

K _{sp} : K _f :	$\begin{array}{ccc} \text{Co(OH)}_{2(s)} & \longrightarrow & \text{Co}^{2+} \\ \text{Co}^{2+}_{(aq)} & + & 6 \text{ NH}_{3(aq)} \end{array}$	(aq) +	2 OH ⁻ (aq) Co(NH ₃)6 ²⁺ (aq)
K _{net} :	Co(OH) _{2(s)} + 6 NH _{3(aq)}		Co(NH ₃)6 ²⁻	+(aq) + 2 OH ⁻ (aq)
I	0.50		0	0
С	- 6x		+ x	+ 2x
Е	0.50 - 6x		х	2x

 $K_{net} = K_{sp} K_f = (1.0 \times 10^{-15}) (5.0 \times 10^4) = 5.0 \times 10^{-11}$ let x = molar solubility 5.0 x 10⁻¹¹ = $[Co(NH_3)_6^{2+}] [OH^-]^2 / [NH_3]^6 = (x)(2x)^2 / (0.50 - 6x)^6$

(assume 6x << 0.50 because K_{net} is small)

$$5.0 \times 10^{-11} \approx 4x^3 / (0.50)^6$$

 $x \approx 5.8 \times 10^{-5} \text{ M}$ (assumption is OK!)

2. (8 points) **SHOW ALL WORK.** In a 1.00 M solution of a certain diprotic acid H₂A, the pH was found to be 1.91 and the equilibrium molar concentration of A^{2-} was measured as 5.0 x 10⁻⁷ M. Determine both the pK_{a1} and pK_{a2} values for this acid.

$$\begin{array}{rcl} \mathsf{K}_{a1} & \mathsf{H}_{2}\mathsf{A} & \Longrightarrow & \mathsf{H}\mathsf{A}^{-} + \; \mathsf{H}^{+} \\ \mathsf{K}_{a2} & \mathsf{H}\mathsf{A}^{-} & \Longrightarrow & \mathsf{A}^{2-} + \; \mathsf{H}^{+} \\ \mathsf{From}\; \mathsf{K}_{a1} & \mathsf{[H^{+}]} \approx \; \mathsf{[HA^{-}]} = \; 10^{-1.91} = \; 1.23 \times 10^{-2} \, \mathsf{M} \\ \mathsf{K}_{a1} = \; \mathsf{[H^{+}]}\; \mathsf{[HA^{-}]} / \; \mathsf{[H}_{2}\mathsf{A} \mathsf{]} \approx \; (1.23 \times 10^{-2})^{2} / \; 1.00 \; \approx \; 1.51 \times 10^{-4} \\ \mathsf{K}_{a2} = \; \mathsf{[H^{+}]}\; \mathsf{[A}^{2-}] / \; \mathsf{[HA^{-}]} \approx \; \mathsf{[A}^{2-}] \; \approx \; 5.0 \times 10^{-7} \\ \mathsf{K}_{a2} = \; 6.30 \end{array}$$

3. (8 points) **SHOW ALL WORK.** Silver phosphate, Ag_3PO_4 (molar mass = 418.6), is a sparingly soluble salt. A saturated aqueous solution of this salt contains only 7.50 mg of Ag_3PO_4 per liter of solution. Calculate the solubility product constant (K_{sp}) of Ag_3PO_4 .

$$\begin{array}{rcl} Ag_2CrO_{4(s)} & \longrightarrow & 3 \ Ag^+(aq) & + \ PO_4^{3-}(aq) \\ K_{sp} &= \ [Ag^+]^3 \ [PO_4^{3-}] &= \ (3x)^3(x) &= \ 27x^4 & (\text{where } x = \text{molar solubility}) \\ x &= \ (7.50 \ \text{mg/L}) \ (10^{-3} \ \text{g/mg}) \ (1 \ \text{mole} \ / \ 418.6 \ \text{g}) &= \ 1.79 \ x \ 10^{-5} \ \text{M} \\ K_{sp} &= \ 27x^4 &= \ 27(1.79 \ x \ 10^{-5})^4 &= \ 2.8 \ x \ 10^{-18} \end{array}$$

- 4. (12 points) Write a *balanced chemical equation* for the *equilibrium* reaction that corresponds to each of the following equilibrium constants.
 (e. g., K_W for H₂O would be: 2 H₂O = H₃O⁺ + OH⁻)
 - (a) K_{sp} for $Fe_2(CO_3)_3$ $Fe_2(CO_3)_3(s) \longrightarrow 2 Fe^{3+}(aq) + 3 CO_3^{2-}(aq)$ (b) K_a for HN₃

$$HN_{3(aq)} + H_2O \implies H_3O^+ + N_3(aq)$$

(c) K_b for HONH₂

$$HONH_{2(aq)} + H_{2}O \implies HONH_{3}^{+}(aq) + OH^{-}(aq)$$

(d) K_f for $Cu(CN)_4^{2-}$

 $Cu^{2+}(aq) + 4 CN^{-}(aq) \longrightarrow Cu(CN)_4^{2-}(aq)$

5. SHOW ALL WORK. Calculate the pH of each of the following solutions. *Include balanced netionic equations for any <u>equilibrium</u> reactions and clearly state any assumptions where appropriate.*

(a) (7 points) Solution A: 0.15 M HNO_3 HNO₃ is a strong acid ~ 100 % ionized [H⁺] = 0.15 M pH = $-\log(0.15) = 0.82$

(b) (7 points) Solution B:
$$0.15 \text{ M Ba}(\text{OH})_2$$

Ba(OH)₂ is a strong base ~ 100 % ionized
[OH⁻] = 2 (0.15) = 0.30 M
pOH = - log (0.30) = 0.52 pH = 14.00 - pOH = 13.48

(c) (12 points) Solution C: 0.500 M NH₄NO₃ (The pK_b value of NH₃ is 4.74) NH₄NO₃ is the salt of a weak base (NH₃), so the cation NH₄⁺ acts as a weak acid. NH₄⁺ \longrightarrow NH₃ + H⁺ K_a = K_w / K_b = 10⁻¹⁴ / (10⁻⁴.74) = 5.50 x 10⁻¹⁰ K_a = 5.50 x 10⁻¹⁰ = [NH₃] [H⁺] / [NH₄⁺] = x² / (0.50 - x) (assume x << 0.50 because K_{net} is small) 5.50 x 10⁻¹⁰ \approx x² / 0.50 x = [H⁺] \approx 1.66 x 10⁻⁵ M (assumption is OK!) pH = - log (1.66 x 10⁻⁵) = 4.78 6. Suppose you had 100.0 mL of each of the same three solutions in problem 5 above:

Solution A:	100.0 mL of 0.15 M HNO ₃	
Solution B :	100.0 mL of 0.15 M Ba(OH) ₂	
Solution C:	100.0 mL of 0.500 M NH ₄ NO ₃	(The pK _b value of NH ₃ is 4.74)

(a) (8 points) It is possible to prepare a *buffer solution* by mixing together the complete volumes of two of these solutions. Which two are they? Circle your answer.

A and B A and C B and C

Briefly explain your answer (50 words max!). Include the *balanced net-ionic equation* for the *reaction that occurs <u>upon mixing</u>* the solutions.

Solution **B** is 0.30 M OH⁻ so it will neutralize some of the weak acid (0.50 M NH₄⁺) in solution **C** to form some of the conjugate base (NH₃).

 $OH^- + NH_4^+ \longrightarrow NH_3 + H_2O$

Thus, mixing Solutions **B** and **C** will yield an NH_4^+ / NH_3 buffer system.

(b) (10 points) **SHOW ALL WORK.** Calculate the pH of this buffer solution. *Include a balanced chemical equation for the main <u>equilibrium</u> reaction in this solution.*

Solution B: (0.100 L) (0.30 mole OH⁻/L) = 0.030 mole OH⁻ Solution C: $(0.100 \text{ L}) (0.50 \text{ mole } \text{NH}_4^+) = 0.050 \text{ mole } \text{NH}_4^+$ + $NH_4^+ \longrightarrow NH_3 + H_2O$ OH⁻ 0.030 mole 0.050 mole 0 - 0.030 - 0.030 + 0.030 0.020 mole 0 0.030 mole buffer solution equilibrium: $NH_4^+ \implies NH_3 + H^+$ $K_a = K_w / K_b = 10^{-14} / 10^{-4.74} = 5.50 \times 10^{-10}$ $[H^+] = K_a (acid) / (base) = K_a (mole NH_4^+) / (mole NH_3)$ $[H^+] = (5.50 \times 10^{-10}) (0.020) / (0.030) = 3.67 \times 10^{-10}$ pH = 9.44

7. EXTRA CREDIT. (5 points) SHOW ALL WORK. Now suppose that the *complete volumes of <u>all</u> <u>three</u> of the above solutions (i.e., A, B, and C) are mixed together. Calculate the pH of the final solution.*

Note: The order in which these solutions are mixed doesn't matter. After all of the acid-base neutralization reactions are finished, the final pH will be the same. Two simple methods are (1) add solution **A** (0.015 mole H^+) to the buffer solution already prepared in part 6(b) above, or (2) first mix solutions **A** (0.015 mole H^+) and **B** (0.030 mole OH^-), followed by the addition of solution **C** (0.050 mole NH_4^+), as shown below.

0.015 mole H⁺ (soln **A**) + 0.030 mole OH⁻ (soln **B**) \longrightarrow excess of 0.015 mole OH⁻

Next, adding this 0.015 mole OH^- to 0.050 mole NH_4^+ (soln **C**) will yield a buffer solution similar to that in part 6(b) but with a different NH_4^+ (0.035 mole) / NH_3 (0.015 mole) ratio.

 $[H^+] = (5.50 \times 10^{-10}) (0.035) / (0.015) = 1.28 \times 10^{-9}$ pH = 8.89

(Separately, try doing this problem by method 1 as described above. The final pH should be the same!)