Chemistry 10123, **Exam 2** February 26, 2020

Name:

(Please Print)

- 1. SHOW ALL WORK. Include balanced chemical equations for any <u>equilibrium</u> reactions and clearly state any assumptions where appropriate. The K_{sp} value for cobalt(II) hydroxide, $Co(OH)_2$, is 1.0 x 10⁻¹⁵. The formation constant (K_f) for the cobalt(II)-ammonia complex ion, $[Co(NH_3)_6]^{2+}$, is 5.0 x 10⁴.
 - (a) (10 points) Calculate the pH of a *saturated solution* of Co(OH)₂ in water.

(b) (8 points) Calculate the *molar solubility* of Co(OH)₂ in a 0.50 M NaOH solution.

(b) (10 points) Calculate the *molar solubility* of Co(OH)₂ in a 0.50 M NH₃ solution.

2. (8 points) **SHOW ALL WORK.** In a 1.00 M solution of a certain diprotic acid H₂A, the pH was found to be 1.91 and the equilibrium molar concentration of A^{2-} was measured as 5.0 x 10⁻⁷ M. Determine both the pK_{a1} and pK_{a2} values for this acid.

3. (8 points) **SHOW ALL WORK.** Silver phosphate, Ag_3PO_4 (molar mass = 418.6), is a sparingly soluble salt. A saturated aqueous solution of this salt contains only 7.50 mg of Ag_3PO_4 per liter of solution. Calculate the solubility product constant (K_{sp}) of Ag_3PO_4 .

- 4. (12 points) Write a *balanced chemical equation* for the <u>equilibrium</u> reaction that corresponds to each of the following equilibrium constants.
 (e. g., K_W for H₂O would be: 2 H₂O = H₃O⁺ + OH⁻)
 - (a) K_{sp} for $Fe_2(CO_3)_3$
 - (b) K_a for HN₃
 - (c) K_b for HONH₂
 - (d) K_f for $Cu(CN)_4^{2-}$

- 5. SHOW ALL WORK. Calculate the pH of each of the following solutions. *Include balanced netionic equations for any <u>equilibrium</u> reactions and clearly state any assumptions where appropriate.*
 - (a) (7 points) Solution A: 0.15 M HNO₃

(b) (7 points) Solution B: 0.15 M Ba(OH)₂

(c) (12 points) Solution C: $0.500 \text{ M NH}_4\text{NO}_3$ (The pKb value of NH3 is 4.74)

6. Suppose you had 100.0 mL of each of the same three solutions in problem 5 above:

Solution A:	100.0 mL of 0.15 M HNO ₃	
Solution B :	100.0 mL of 0.15 M Ba(OH) ₂	
Solution C:	100.0 mL of 0.500 M NH ₄ NO ₃	(The pK _b value of NH ₃ is 4.74)

(a) (8 points) It is possible to prepare a *buffer solution* by mixing together the complete volumes of two of these solutions. Which two are they? Circle your answer.

A and B A and C B and C

Briefly explain your answer (50 words max!). Include the *balanced net-ionic equation* for the *reaction that occurs <u>upon mixing</u>* the solutions.

(b) (10 points) **SHOW ALL WORK.** Calculate the pH of this buffer solution. *Include a balanced chemical equation for the main <u>equilibrium</u> reaction in this solution.*

7. EXTRA CREDIT. (5 points) SHOW ALL WORK. Now suppose that the *complete volumes of <u>all</u> <u>three</u> of the above solutions (i.e., A, B, and C) are mixed together. Calculate the pH of the final solution.*