Answer Key

Chemistry 10123, **Exam 1** January 30, 2019

- 1. (3 points) At a pressure of 1025 torr, the solubility of O₂ gas in water is 0.00175 M. If the pressure is increased to 25 atm, the solubility of O₂ should be 0.0324 M.
- 2. (4 points) The heat of solution (ΔH°_{soln}) of an ionic compound in water is approximately equal to the sum of the lattice energy of the crystalline solid and the hydration energy of the ions in solution.
- 3. (2 points) In the **Transition State** Theory of chemical kinetics, a type of graph called a "reaction coordinate diagram" is used to illustrate Energy of Activation.
- 4. (2 points) In water, soap molecules aggregate into small particles called micelles.
- 5. (2 points) Three common examples of colloidal dispersions are: paint, milk, soap, fog, etc.
- 6. (11 points) A kinetic study of the following gas-phase reaction gave the concentration vs initial rate data summarized below. $CH_3Cl + 3 Cl_2 \longrightarrow CCl_4 + 3 HCl$

Expt	[CH ₃ Cl]	[Cl ₂]	initial rate (mole/L·sec)
(1)	0.250	0.150	0.0215
(2)	0.450	0.450	0.0670
(3)	1.350	0.150	0.1161
(4)	0.450	0.150	0.0387

Determine the **rate law** for this reaction. **Clearly SHOW how you arrive at your answer**. (It is not necessary to calculate the value of the rate constant.)

Compare expts 1 & 3 with constant [Cl₂] to find rate ~ [CH₃Cl]^X

 $0.1161 / 0.0215 = (1.35 / 0.25)^{X}$

5.4 = $(5.40)^{X}$ \therefore x = 1 (1st order in CH₃Cl)

Compare expts 2 and 4 with constant [CH₃CI] to find rate ~ $[CI_2]^{y}$

0.0670 / 0.0387 = (0.450 / 0.150) $1.73 = 3^{y}$ \therefore y = 1/2 (1/2 order in Cl₂)

Overall Rate Law: rate = $k[CH_3CI][CI_2]^{1/2}$

7. (10 points) **SHOW ALL WORK.** A 0.725 g sample of an unknown polymer was dissolved in a suitable solvent and diluted with the solvent to make 250 mL of solution. The osmotic pressure of the solution was found to equal 1.35 torr at 20° C. Determine the molar mass of the polymer.

 $\Pi V = nRT$ $n = \Pi V/RT = (1.35 \text{ torr}) (1 \text{ atm} / 760 \text{ torr}) (0.250 \text{ L}) / (0.0821 \text{ L} \cdot \text{atm/mole} \cdot \text{K}) (293 \text{ K})$ $n = 1.846 \text{ x} 10^{-5} \text{ moles}$ molar mass = $(0.725 \text{ g}) / (1.846 \text{ x} 10^{-5} \text{ moles}) = 3.93 \text{ x} 10^4 \text{ g/mole}$

- 8. A concentrated solution of $MgCl_{2(aq)}$ is 25.0 % MgCl₂ by mass and has a density of 1.26 g/mL. The following problems all deal with this solution but they can be solved independently. [Molar masses: $H_2O = 18.0$, $MgCl_2 = 95.2$]
 - (a) (6 points) SHOW ALL WORK. Determine the mole percent of MgCl₂ in the solution.

25.0 % by mass: 25.0 g MgCl₂ mixed with 75.0 g H₂O (25.0 g MgCl₂) (1 mole / 95.2 g) = 0.263 mole MgCl₂ (75.0 g H₂O) (1 mole / 18.0 g) = 4.167 mole H₂O mole % = $(0.263) / (0.263 + 4.167) \times 100 \% = 5.94$ mole %

(b) (8 points) SHOW ALL WORK. Assuming complete dissociation, determine the freezing point (in °C) of this MgCl₂ solution. (*Note*: For water, $K_f = 1.86$ °C/m)

molality of MgCl₂ = $(0.263 \text{ mole MgCl}_2) / (0.075 \text{ kg H}_2\text{O}) = 3.51 \text{ m}$

1 mole of MgCl₂ yields 3 moles of ions in solution

 \therefore effective molality is 3 x 3.51 = 10.5 m

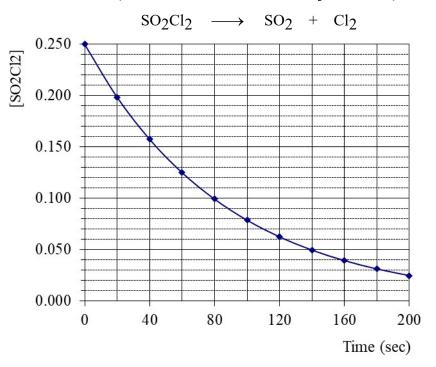
 $\Delta T = K_f m = (1,86 \text{ °C/m}) (10.5 \text{ m}) = 19.5 \text{ °C}$ freezing point = -19.5 °C

(c) (10 points) **SHOW ALL WORK.** Determine the volume (in mL) of this MgCl₂ solution that is required to react exactly with 1.50 L of 0.250 M AgNO_{3(aq)} to precipitate all of the Ag⁺ as AgCl_(s).

Precipitation: 2 AgNO_{3(aq)} + MgCl_{2(aq)} \longrightarrow 2 AgCl_(s) + Mg(NO₃)_{2(aq)}

0.263 moles MgCl₂ is contained in 100 g of solution

(100 g)(1 mL / 1.26 g) = 79.37 mL = 0.07937 L


 $(0.263 \text{ mole}) / (0.07937 \text{ L}) = 3.314 \text{ M MgCl}_2$

 $(1.50 L) (0.25 mole Ag^+/L) = 0.375 mole Ag^+$

 $(0.375 \text{ mole Ag}^+)$ (1 mole MgCl₂ / 2 mole Ag⁺) = 0.1875 mole MgCl₂

(0.1875 mole MgCl₂) (1000 mL / 3.314 mole) = 56.6 mL

- 9. (3 points) The vapor pressure of pure hexane (C_6H_{14}) is 120 torr at 20 °C. If 1.0 mole of a non-volatile solute is dissolved in 5.0 moles of hexane at that temperature, the vapor pressure of the resulting solution should be 100 torr.
- 10 At a certain temperature, a kinetic study of the decomposition reaction of SO₂Cl₂ gave the following concentration *vs* time data. (*Do not assume the reaction is first order*!)

(a) (2 points) The half-life for this reaction is 60 sec.

(b) (4 points) SHOW ALL WORK. Determine the *initial rate* of this reaction in units of mole/L·sec.

rate = \triangle conc / \triangle time = (0.250 M - 0.200 M) / 20 sec = 2.5 x 10⁻³ M/sec

(c) (4 points) **SHOW ALL WORK.** Determine the *instantaneous* rate of this reaction when time = 120 sec.

rate = (0.080 M - 0.050 M) / 40 sec = 7.5 x 10⁻⁴ M/sec

(d) (5 points) *In 50 words or less, describe* how you would re-plot the above data in order to prove that this reaction is first order? Also, explain how to determine the rate constant (k) from your new graph.

For a first order process, the integrated rate law is: $ln[SO_2Cl_2]_t = -kt + ln[SO_2Cl_2]_0$ Therefore, a plot of $ln[SO_2Cl_2]$ vs t should be a straight line with slope = -k.

- 11. (2 points) Two important factors that affect the rate of a reaction are: concentration, temperature, or nature of reactants. (Do *not* write "time" as one of your answers!)
- 12. A kinetic study of the gas-phase decomposition reaction of N₂O₅ shows it to be a first-order process. In one experiment at 25 °C, the reaction vessel initially contained pure N₂O₅ at a pressure of 250 torr. After the reaction occurred for 10.0 hours, the *total* pressure in the reaction vessel was 484 torr.

 $2 \text{ N}_2 \text{O}_5(g) \longrightarrow 4 \text{ NO}_2(g) + \text{O}_2(g)$

(a) (2 points) Write the rate law for this reaction.

rate = $k[N_2O_5]$

(b) (10 points) SHOW ALL WORK. Determine the rate constant (k) for this reaction at 25 °C in units of sec⁻¹.

Since the Rx is first order: $\ln P(N_2O_5)_t = -kt + \ln P(N_2O_5)_0$

As the reaction occurs, based on the balanced equation above, 2x torr of N₂O₅ reacts to form 4x torr of NO₂ and x torr of O₂.

$$P(\text{total}) = P(N_2O_5) + P(NO_2) + P(O_2)$$

$$484 \text{ torr} = (250 \text{ torr} - 2x) + 4x + x = 250 \text{ torr} + 3x \qquad \text{solve for } x = 78 \text{ torr}$$

$$After 10 \text{ hrs has elapsed: } P(N_2O_5) = 250 \text{ torr} - 2 (78 \text{ torr}) = 94 \text{ torr}$$

$$\ln(94) = -k (10.0 \text{ hr}) (3600 \text{ sec/hr}) + \ln(250)$$

$$k = 2.72 \times 10^{-5} \text{ sec}^{-1}$$

13. (10 points) SHOW ALL WORK. A certain chemical reaction has an Activation Energy of 105 kJ/mole. Determine the temperature (in °C) at which the reaction would occur 10⁵ times faster than it does at 0 °C.

$$ln(k_2 / k_1) = -E_a/RT [1/T_2 - 1/T_1]$$

$$ln(10^5) = (-105 \text{ kJ/mole})/(8.314 \text{ x } 10^{-3} \text{ kJ/mole} \cdot \text{K}) [1/T_2 - 1/273 \text{ K}]$$

$$11.513 = -(12629) [1/T_2 - 1/273]$$

$$1/T_2 = 2.751 \text{ x } 10^{-3}$$

$$T_2 = 363 \text{ K} = 90.5 \text{ °C}$$