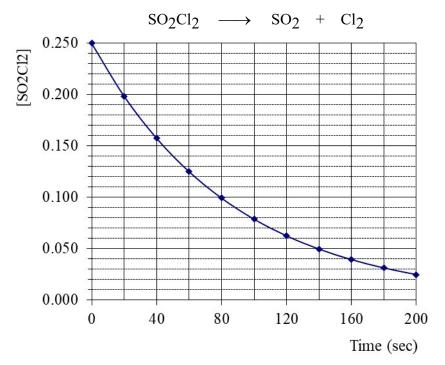
Chemistry 10123, 1	Exam 1
January 30, 2019	

Name:	
	(Please Print)

increased to 25 atm, the solubility of	O -1111 · M	
, , , , , , , , , , , , , , , , , , ,	O ₂ should be M.	
	111	• •
energy of the ions in solution.	energy of the crystalline solid and the	
· • /	<u> </u>	
	sum of the energy of the ions in solution. (2 points) In the	(4 points) The heat of solution (ΔH° _{soln}) of an ionic compound in water is approxim of the energy of the crystalline solid and the energy of the ions in solution. (2 points) In the Theory of chemical kincalled a "reaction coordinate diagram" is used to illustrate Energy of Activation

4. (2 points) In water, soap molecules aggregate into small particles called ______.

5. (2 points) Three common examples of colloidal dispersions are: ______, and


6. (11 points) A kinetic study of the following gas-phase reaction gave the concentration vs initial rate data summarized below. CH₃Cl + 3 Cl₂ \longrightarrow CCl₄ + 3 HCl

Expt	[CH ₃ Cl]	[Cl ₂]	initial rate (mole/L·sec)
(1)	0.250	0.150	0.0215
(2)	0.450	0.450	0.0670
(3)	1.350	0.150	0.1161
(4)	0.450	0.150	0.0387

Determine the **rate law** for this reaction. **Clearly SHOW how you arrive at your answer**. (It is not necessary to calculate the value of the rate constant.)

7.	(10 points) SHOW ALL WORK. A 0.725 g sample of an unknown polymer was dissolved in a suitable solvent and diluted with the solvent to make 250 mL of solution. The osmotic pressure of the solution was found to equal 1.35 torr at 20° C. Determine the molar mass of the polymer.
8.	A concentrated solution of $MgCl_{2(aq)}$ is 25.0 % $MgCl_{2}$ by mass and has a density of 1.26 g/mL. The following problems all deal with this solution but they can be solved independently. [Molar masses: $H_{2}O = 18.0$, $MgCl_{2} = 95.2$]
	(a) (6 points) SHOW ALL WORK. Determine the mole percent of MgCl ₂ in the solution.
	(b) (8 points) SHOW ALL WORK. Assuming complete dissociation, determine the freezing point (in °C) of this MgCl ₂ solution. (<i>Note</i> : For water, K _f = 1.86 °C/m)
	(c) (10 points) SHOW ALL WORK. Determine the volume (in mL) of this MgCl ₂ solution that is required to react exactly with 1.50 L of 0.250 M AgNO _{3(aq)} to precipitate all of the Ag ⁺ as AgCl _(s) .

- 9. (3 points) The vapor pressure of pure hexane (C_6H_{14}) is 120 torr at 20 °C. If 1.0 mole of a non-volatile solute is dissolved in 5.0 moles of hexane at that temperature, the vapor pressure of the resulting solution should be
- 10 At a certain temperature, a kinetic study of the decomposition reaction of SO₂Cl₂ gave the following concentration vs time data. (*Do not assume the reaction is first order!*)

- (a) (2 points) The half-life for this reaction is sec.
- (b) (4 points) **SHOW ALL WORK.** Determine the *initial rate* of this reaction in units of mole/L•sec.
- (c) (4 points) **SHOW ALL WORK.** Determine the *instantaneous* rate of this reaction when time = 120 sec.
- (d) (5 points) *In 50 words or less, describe* how you would re-plot the above data in order to prove that this reaction is first order? Also, explain how to determine the rate constant (k) from your new graph.

11. (2 points)	Two important factors that affect the rate of a reaction are:
and	. (Do <i>not</i> write "time" as one of your answers!)

12. A kinetic study of the gas-phase decomposition reaction of N₂O₅ shows it to be a first-order process. In one experiment at 25 °C, the reaction vessel initially contained pure N₂O₅ at a pressure of 250 torr. After the reaction occurred for 10.0 hours, the *total* pressure in the reaction vessel was 484 torr.

$$2 \text{ N}_2\text{O}_{5(g)} \longrightarrow 4 \text{ NO}_{2(g)} + \text{ O}_{2(g)}$$

- (a) (2 points) Write the rate law for this reaction.
- (b) (10 points) **SHOW ALL WORK.** Determine the rate constant (k) for this reaction at 25 °C in units of sec⁻¹.

13. (10 points) **SHOW ALL WORK.** A certain chemical reaction has an Activation Energy of 105 kJ/mole. Determine the temperature (in °C) at which the reaction would occur 10⁵ times faster than it does at 0 °C.