Chemical Bonding -- Lewis Theory (Chapter 9)

Ionic Bonding

1. Ionic Bond

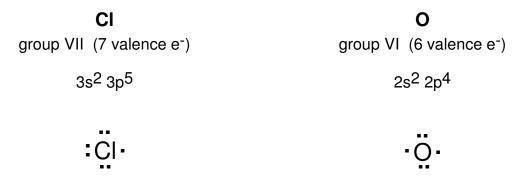
Electrostatic attraction of positive (cation) and negative (anion) ions

Neutral Atoms $\xrightarrow{e^{-} \text{ transfer}}$ cation + anion (IE and EA) \leftarrow (Lattice Energy)

Lattice Energy: energy released when gaseous ions combine to form crystalline solid (an ionic compound)

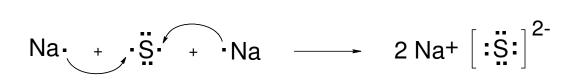
e.g., LE of NaCl is 787 kJ/mole:

 $Na^+(g) + Cl^-(g) \longrightarrow NaCl_{(s)} + 787 \text{ kJ}$


2. Octet Rule

In forming ionic compounds, atoms tend to gain or lose electrons in order to achieve a stable valence shell electron configuration of 8 electrons.

Group I metal	$s \longrightarrow$	+1 cations (Li+, Na+, etc.)
Group II meta	$ls \longrightarrow$	+2 cations (Mg ²⁺ , ca^{2+} , etc.)
Al (group III)	\longrightarrow	Al ³⁺
Group VII (17	$) \longrightarrow$	-1 anions (F ⁻ , Cl ⁻ , Br ⁻ , etc.)
Group VI (16)	\longrightarrow	-2 anions (O^{2-} , S^{2-} , etc.)
Group V (15)	\longrightarrow	-3 anions (N ³⁻ , P ³⁻)
e.g., N	a 2s ² 2p ⁶ 3s ¹	\longrightarrow Na ⁺ 2s ² 2p ⁶ {~ Ne}
С	$3s^2 3p^5 \longrightarrow$	Cl ⁻ 3s ² 3p ⁶ {~ Ar}


3. Lewis Symbols

simple notation for showing number of valence electrons

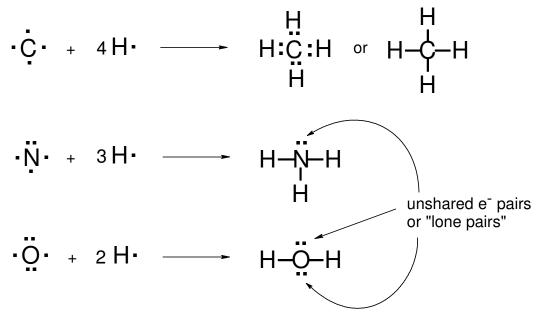
Na₂S Na⁺ combined with S²⁻

e.g., Use Lewis Symbols to illustrate the formation of a compound of sodium and sulfur

Covalent Bonding

1. Covalent Bond Formation

results from sharing of one or more pairs of electrons between 2 atoms

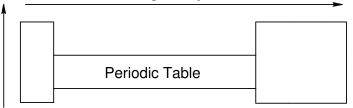

Examples:

 $H \cdot + H \cdot \longrightarrow H : H \quad \text{or} \quad H - H$ $H \cdot + : F \cdot \longrightarrow H : F : \quad \text{or} \quad H - F :$

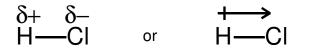
2. Octet Rule -- for covalent bonding

In forming covalent bonds, atoms tend to share sufficient electrons so as to achieve a stable outer shell of 8 electrons around both atoms in the bond.

3. Multiple Bonds -- "double" and "triple" bonds


double bond: sharing of 2 pairs of electrons between two atoms*triple bond*: sharing of 3 pairs of electrons between two atoms

	Bond Energy / Bond Strength					
Type of Bond:	single	double	triple			
Bond Order:	1	2	3			
	◄	Bond Distance				
Examples:	0 ₂	{ O=O double bond }				
	N ₂	{ N=N triple bond }				
	CO ₂	{ two C=O double bonds }				


4. Electronegativity and Bond Polarity

electronegativity tendency of an atom *in a molecule* to attract electrons to itself

Electronegativity Increases

e.g., CI is more electronegative than H, so there is partial charge separation in the H-CI bond:

the H-Cl bond is described as "*polar*" and is said to have a "*dipole*"

the entire HCI molecule is also polar as a result

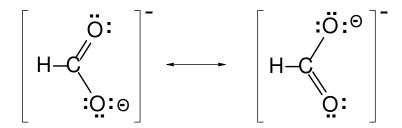
more complex molecules can be polar or nonpolar, depending on their 3-D shape (Later)

Lewis Electron Dot Formulas

- 1. General Procedure -- stepwise process
 - Write the skeletal structure (which atoms are bonded?)
 - Count *all valence electrons* (in pairs)
 - Place 2 electrons in each bond
 - Complete the octets of the terminal atoms
 - Put any remaining electron pairs on the central atom, or
 - Use multiple bonds if needed to complete the octet of the central atom
 - Show formal charges and resonance forms as needed

Apply the **OCTET RULE** as follows:

- H never has more than 2 electrons (i.e., one bond)
- 2nd row elements (e.g., C, N, O) *almost always* have an octet and *never have more than 8 electrons* (sometimes Boron has only 6)
- 3rd row and higher elements can have more than 8 electrons but *only after the octets of any 2nd row elements are completed*
- 2. Formal Charge -- the "apparent" charge on an atom in a covalent bond
 - (# of valence e⁻ in the isolated atom) (# of bonds to the atom)
 (# of unshared electrons on the atom)


{ minimize formal charges whenever possible }

Write Lewis Dot Formulas:	NH ₃	NH4+	SF ₂	SF4
---------------------------	-----------------	------	-----------------	-----

3. Resonance

When multiple bonds are present, a single Lewis structure may not adequately describe the compound or ion -- occurs whenever there is a "choice" of where to put a multiple bond.

e.g., the HCO₂⁻ ion is a "*resonance hybrid*" of two "*contributing resonance structures*"

the C-O bond order is about 1.5 (average of single and double bonds)

Examples

Write Lewis Electron Dot Structures (including formal charges and/or resonance as needed) for the following compounds and ions.

HNO₃ H₂CO N₃⁻

Bond Energies and Heats of Reaction (AH)

Bond Energy is the energy required to break a chemical bond.

Tabulated values (Table 9.3) are *average* bond energies in units of kJ / mole.

Bond-breaking is endothermic, bond-making is exothermic.

△H for a reaction can be estimated from bond energies as follows. (Counting ALL bond energies as positive values!)

$\Delta H^{\circ} \approx \Sigma BE$ (bonds broken) - ΣBE (bonds formed)

Problem

Use data in Table 9.3 to estimate ΔH° for the reaction.

CH ₂ =CH ₂	+	H ₂ O	\longrightarrow	CH3-0	CH ₂ -OH
<u>Bonds Broken</u>				<u>Bonds</u>	Formed
C=C 612				C-C	348
H-O <u>463</u>				C-H	412
$\Sigma = 1,075$				C-0	<u>360</u>
				\sum =	1,120

:. $\Delta H^{\circ} \approx 1,075$ - 1,120 \approx - 45 kJ/mole

This estimate compares well with the value calculated from Standard Heats of Formation (Chapter 6).

Use tabulated ΔH°_{f} values from textbook:

 $\Delta H^{\circ} = \sum \Delta H^{\circ}_{f}$ (products) - $\sum \Delta H^{\circ}_{f}$ (reactants)

 $\Delta H^{\circ} = (-278) - [(+51.9) + (-285.9)] = -43 \text{ kJ/mole}$