Important Properties of a Gas

More important:

 1 mm Hg = 1 torr **1 atm = 760 torr = 760 mm Hg**

Pressure - Volume - Temperature Relationships

4. Combined Gas Law (for constant n)

(remember that T must be in units of K -- practice problems in book!)

Ideal Gas Law

1. **Avogadro's Principle**

at constant P and T, $V \propto n$

- i.e., at constant T and P, equal volumes of gases contain equal numbers of moles
- 2. Standard Molar Volume

at Standard Temperature and Pressure (0°C and 1 atm),

1 mole of any gas occupies 22.4 L (i.e., **22.4 L / mole**)

3. The **Ideal Gas Equation**

PV = nRT

{ Useful in many different kinds of calculations involving gases!!! }

Problem:

At STP, the density of a certain gas is 4.29 g/L. What is the molecular mass of the gas?

 $(4.29 \text{ g} / \text{L}) \times (22.4 \text{ L} / \text{mole}) = 96.0 \text{ g} / \text{mole}$

Problem:

Acetylene (welding gas), C_2H_2 , is produced by hydrolysis of calcium carbide.

 $CaC_{2 (s)} + 2 H_{2}O \longrightarrow Ca(OH)_{2 (s)} + C_{2}H_{2 (g)}$ Starting with 50.0 g of CaC₂, what is the theoretical yield of acetylene in liters, collected at 24°C and a pressure of 745 torr?

1st find yield in **moles**:

 50.0 g CaC₂ \times $\frac{1 \text{ m} \cdot \text{m} \cdot \text{m}}{64.10 \text{ g} \cdot \text{CaCo}}$ \times $\frac{1 \text{ m} \cdot \text{m} \cdot \text{m} \cdot \text{m}}{1 \text{ m} \cdot \text{m} \cdot \text{m} \cdot \text{m} \cdot \text{m}}$ = 0.780 mole C₂H₂ 1 mole C2H2 64.10 g CaC₂ 1 mole CaC₂ 1 mole CaC₂

now use ideal gas law to find **volume** of C2H2:

PV = nRT
$$
\implies
$$
 V = $\frac{nRT}{P}$
V = $\frac{(0.780 \text{ mole}) \times (0.0821 \text{ L atm} / \text{mole K}) \times (297 \text{ K})}{(745 \text{ torr}) \times (1 \text{ atm} / 760 \text{ torr})} = 19.4 \text{ L}$

Dalton's Law of Partial Pressures

For a mixture of gases: $P_{total} = P_a + P_b + P_c + \ldots$

Gases are often prepared and **collected over water**:

$$
P_{total} = P_{gas} + P_{water}
$$

where P_{water} = **vapor pressure** of water (depends on temperature)

e.g., at 25° C, Pwater = 23.8 torr at 50 °C, P_{water} = 92.5 torr

Problem:

A sample of N₂ gas was prepared and collected over water at 15 \degree C. The total pressure of the gas was 745 torr in a volume of 310 mL. Calculate the mass of $N₂$ in grams.

$$
P_{total} = P_{gas} + P_{water}
$$

\n745 torr = P_{gas} + 12.8 torr
\n
$$
P_{gas} = 732.2 \text{ torr}
$$

\nPV = nRT \implies n = $\frac{PV}{RT}$
\nn = $\frac{(732.2 \text{ torr}) \times (1 \text{ atm} / 760 \text{ torr}) \times (0.310 \text{ L})}{(0.0821 \text{ L atm} / \text{ mole K}) \times (288 \text{ K})}$ = 0.0126 mole N₂
\nmass N₂ = (0.0126 mole N₂) x (28.0 g N₂ / mole N₂) = 0.354 g N₂

Graham's Law of Effusion

so, effusion rates of two gases can be compared as a proportion:

$$
\frac{\text{ER}_a}{\text{ER}_b} = \sqrt{\frac{\text{FM}_b}{\text{FM}_a}}
$$

e.g., He (FM = 4.0 g/mole) effuses 2 times faster than CH_4 (FM = 16.0)

Kinetic Theory of Gases -- READ BOOK

Basic Postulate: An gas consists of a very large number of very small particles, in constant random motion, which undergo perfectly elastic collisions with each other and the container walls.

There is a distribution of kinetic energies of the particles (Figure 5.19)

Temp \approx average KE

The kinetic theory "explains" the gas laws, pressure, etc. based on motion and kinetic energy of gas molecules.

e.g., **Boyle's Law** ($P \propto 1/V$) -- at constant Temp (same average KE)

If volume of container is reduced, there are more gas particles per unit volume, thus, more collisions with the container walls per unit area. ∴ higher pressure

Real Gases -- Deviations from Ideal Gas Law

For real gases, small corrections can be made to account for:

 Actual volume of the gas particles themselves, and Intermolecular attractive forces

One common approach is to use the **Van der Waals' Equation**:

$$
\left(P + \frac{na^2}{V^2}\right)(V - nb) = nRT
$$

Don't memorize !

Where, a and b are empirical parameters that are dependent on the specific gas (e.g., Table 5.5).

 $a \approx$ intermolecular attractive forces

 $b \approx$ molecular size