Molecules, Compounds, and Chemical Equations (Chapter 3)

Chemical Compounds

1. Classification of Elements and Compounds

Types of Pure Substances (Figure 3.4)

Elements -- made up of only one type of atom

atomic (e.g., He, Cu) or *molecular* (e.g., H₂, N₂, P₄)

Compounds -- made up of atoms of two or more different elements

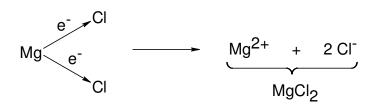
molecular (e.g., H₂O, PF₅) or ionic (e.g., NaCl)

2. Elements combine to form compounds -- two general types

Molecular Compounds -- Covalent Bonding -- electron sharing

atoms linked together by "covalent bonds" in *discrete* electrically neutral particles called *molecules*

e.g., H₂O CO₂ PCl₃ C₁₂H₂₂O₁₁


Ionic Compounds -- Ionic Bonding -- electron transfer

result from transfer of one or more electrons from one atom to another to yield oppositely-charged particles called *ions*

cation = positive ion *anion* = negative ion

there are not discrete molecules -- the ions are held together by electrostatic forces in a regular, 3-dimensional pattern called a *crystalline lattice*

e.g., MgCl₂ magnesium chloride

3. Properties of Ionic and Molecular Compounds

Ionic compounds:

- hard, brittle, high-melting crystalline solids
- non-conductors in solid state, but conductors when molten
- *electrolytes* -- separate into ions in aqueous solution

Molecular compounds:

- only weak attractive forces between uncharged molecules
- generally low mp and bp
- non-conductors of electricity
- usually nonelectrolytes
- 4. Types of Chemical Formulas (e.g., see <u>Table 3.1</u>)

empirical formula shows the simplest ratio of the elements present

molecular formula shows the *actual number* of atoms in one molecule

structural formula shows how the atoms are connected

e.g., for "hydrogen peroxide" the three formulas are:

empirical: HO molecular: H₂O₂

structural: H_0-0^{-H}

molecular model a 3-D rendering of the structure of a molecule common types are "ball and stick" or "space-filling"

5. Relationship to Periodic Table -- Some General trends

Molecular compounds contain only nonmetals and/or metalloids

e.g.,	PH ₃	AsF ₅	HBr
o.g.,		7.01.0	1101

some nonmetallic elements actually exist as molecular compounds

e.g., the diatomics (H₂, O₂, N₂, etc. as listed before) also: P₄, As₄, S₈, Se₈

lonic compounds contain *metals* and/or *polyatomic ions*

group IA (1)	+1 cations	Li+, Na+, K+,
group IIA (2)	+2 cations	Mg ²⁺ , Ca ²⁺ ,
an important +3 cation		Al3+

other metals may form more than one cation, e.g.:

Fe ²⁺ and Fe ³⁺	Sn ²⁺	and Sn ⁴⁺
group VIA (16)	-2 anions	O ²⁻ , S ²⁻ , Se ²⁻ ,
group VIIA (17)	-1 anions	F⁻, Cl⁻, Br⁻,

6. Polyatomic lons -- two or more atoms combined in a single charged unit

e.g.,	NH_4^+	ammonium ion
	NO3-	nitrate ion
	РО4 ³⁻	phosphate ion
	HCO3-	hydrogen carbonate (or bicarbonate ion)

KNOW ALL of the formulas and names in Table 3.4 plus the following!!!

H ₃ O+	hydronium ion
C ₂ O ₄ 2-	oxalate
PO3 ³⁻	phosphite
OCN ⁻	cyanate
SCN ⁻	thiocyanate
S ₂ O ₃ 2-	thiosulfate

See the class web site for an organized tabulation of the polyatomic ions!

Writing Formulas for Ionic Compounds

look for the *simplest combination of cations and anions* to yield an electrically neutral formula

e.g., _	ion combination	compound
	Mg ²⁺ and Cl ⁻	MgCl ₂
	Na+ and O ²⁻	Na ₂ O
	Fe^{3+} and SO_4^{2-}	Fe ₂ (SO ₄) ₃

- e.g., What compound should form between sulfur (S) and potassium (K)?
 - K is in group IA \rightarrow K⁺
 - S is in group VIA \rightarrow S²⁻

therefore, the compound should be K_2S

Inorganic Chemical Nomenclature

1. Binary compounds of metals and nonmetals -- *ionic* compds

cation first, then anion, e.g.:

MgO	magnesium ox <i>ide</i>		
CaF ₂	calcium fluor <i>ide</i>		
FeO	iron(II) ox <i>ide</i>	{aka	ferrous oxide}
Fe ₂ O ₃	iron(III) ox <i>ide</i>	{aka	ferric oxide}

2. Compounds with polyatomic ions -- ionic compds

must first recognize the polyatomic ions, e.g.:

Na ₂ SO ₄	sodium sulfate	
NH ₄ Cl	ammonium chloride	
Cr ₃ (PO ₄) ₂	chromium(II) phosphate	

3. Hydrated ionic compounds

have a specific number of water molecules associated with each formula unit of an ionic substance

- e.g., MgCl₂ 6H₂O magnesium chloride hexahydrate CuSO₄ • 5H₂O copper(II) sulfate pentahydrate
- 4. Binary compounds of nonmetals -- molecular compds

use prefixes to indicate numbers of each atom, e.g.:

PF_3	phosphorus trifluoride
P_2F_4	diphosphorus tetrafluoride
N ₂ O ₅	dinitrogen pentoxide
exception	hydrogen plus one atom of a nonmetal. e.g.:
H ₂ S	hydrogen sulfide (not "dihydrogen")

- 5. Binary acids and their salts
 - **Acid:** substance that reacts with water to yield hydronium ions (H₃O⁺) and anions, e.g.:

 $HBr_{(g)} + H_2O \longrightarrow H_3O^+_{(aq)} + Br_{(aq)}$

HBr_(aq) hydrobromic acid

H₂Se_(aq) hydroselenic acid

Salt: an *ionic compound* produced by *neutralization* of an *acid* by a *base* (a supplier of hydroxide ions, OH⁻), e.g.:

HBr _(aq) acid	+ KOH _(aq) \longrightarrow base	KBr _(aq) + H ₂ O salt water
KBr	potassium bromide	{a salt of <i>hydro</i> brom <i>ic acid</i> }
Na ₂ S	sodium sulfide	{a salt of <i>hydro</i> sulfur <i>ic acid</i> }

6. Oxoacids and their salts

oxoacid (aka *oxyacid*) -- H_XEO_y (where E = nonmetal) removal of H⁺ yields polyatomic anions

oxoacid	polyatomic ions	salt example
H ₂ SO ₄	SO42-	Na ₂ SO ₄
sulfur <i>ic</i> acid	sulf <i>ate</i>	sodium sulf ate
	HSO ₄ ⁻	NaHSO ₄
	hydrogen sulf <i>ate</i>	sodium hydrogen sulf ate
H ₂ SO ₃	5032-	CaSO3
sulfur <i>ous</i> acid	sulf <i>ite</i>	calcium sulf <i>ite</i>
	HSO3-	Ca(HSO ₃) ₂
	hydrogen sulf <i>ite</i>	calcium hydrogen sulf ite

review the series of chlorine oxoacids and their salts: $HCIO_X$ (x = 1, 2, 3, 4)

Composition of Compounds

1. Empirical and Molecular Formulas

empirical formula -- shows the *simplest ratio* of the elements present *molecular formula* -- shows the *actual number* of atoms in one molecule

2. Percentage Composition -- mass % of elements in a compound

theoretical % composition -- from given formula

Problem: What is percentage composition of H₂CO₃?

mole ratio = 2 mol H : 1 mol C : 3 mol O

molar mass = 2 (1.0) + 1 (12.0) + 3 (16.0) = 62.0 g/mole

% composition:

 $\% H = [mass H / mass H_2CO_3] \times 100\%$ = [2 (1.01) / 62.0] x 100 % = 3.26 % $\% C = (12.01 / 62.0) \times 100 \% = 19.36$ $\% O = [3 (16.00) / 62.0] \times 100 \% = 77.38$ Total: 100.00 %

3. Empirical Formula -- determination from % composition

Problem:

A certain fluorocarbon is found to be 36.52% C, 6.08% H, and 57.38% F. What is the empirical formula of this compound?

{we're looking for the *mole ratio* of the elements}

in 100 g of the compound, there are:

 $(36.52 \text{ g-C}) \times (1 \text{ mol C} / 12.01 \text{ g-C}) = 3.041 \text{ mole C}$

 $(6.08 \text{ g H}) \times (1 \text{ mol H} / 1.01 \text{ g H}) = 6.020 \text{ mole H}$

(57.38 g F) x (1 mol F / 19.00 g F) = 3.020 mole F

so, the mole ratio is:

C_{3.041} H_{6.020} F_{3.020}

now reduce to simplest ratio (divide by smallest number):

C_{3.041}/3.020 H_{6.020}/3.020 F_{3.020}/3.020

= $C_{1.007}$ H_{1.993} F = CH₂F (the *empirical formula*)

4. Molecular Formula

empirical formula combined with molecular mass = molecular formula

Problem:

The above fluorocarbon is found to have a molecular mass of 66.08 g/mole. What is the molecular formula?

n x (mass of empirical formula) = molecular mass{ n = ? }
empirical formula = CH₂F
formula mass = 1 C + 2 H + 1 F = 33.03 g/mole
n x (33.03 g/mole) = 66.08 g/moleso, n = 2
∴ molecular formula is C₂H₄F₂

Chemical Equations

1. Balancing Chemical Equations -- by inspection

Adjust coefficients to get equal numbers of each kind of element on both sides of arrow. Use smallest, whole number coefficients.

e.g., start with unbalanced equation (for the *combustion* of butane):

 $\begin{array}{cccc} C_4H_{10} & + & O_2 & \longrightarrow & CO_2 & + & H_2O \\ \hline \textit{reactants} & \textit{products} \end{array}$

Hint: first look for an element that appears only once on each side; e.g., C

 C_4H_{10} + 13/2 O_2 \longrightarrow 4 CO_2 + 5 H_2O

multiply through by 2 to remove fractional coefficient:

 $2 C_4 H_{10} + 13 O_2 \longrightarrow 8 CO_2 + 10 H_2 O_2$

2. Combustion Analysis

see Examples 3.20 and 3.21 in textbook

based on combustion reactions (like the one above)

 $C_{X}H_{V} \text{ or } C_{X}H_{V}O_{Z} \text{ compound } + \text{ excess } O_{2} \longrightarrow CO_{2} + H_{2}O_{2}$

% C and x determined from amount of CO2 produced

% H and y determined from amount of H₂O produced

% O (if present) and z must be determined by difference

Organic Compounds -- molecular compounds of carbon

(See Tables 3.6 and 3.7)

Family	Main Structural Feature	Examples
Hydrocarbons:		
Alkanes	only single bonds	CH ₃ CH ₃
Alkenes	C=C	CH ₂ =CH ₂
Alkynes	C≡C	HC≡CH
Aromatic	benzene ring (e.g., C ₆ H ₆)	
Alcohols	R-OH	CH ₃ CH ₂ OH
Ethers	R-O-R'	CH ₃ OCH ₃
Aldehydes	O II R—C—H	О Н3—С—Н
Ketones	O II R—C—R'	О ^{II} СН3—С—СН ₂ СН3
Carboxylic Acids	O II R—C—OH	о сн ₃ —с—он
Esters	O II R—C—OR'	О Ш СН ₃ —С—ОСН ₂ СН ₃
Amines	RNH ₂ , R ₂ NH, R ₃ N	CH ₃ NH ₂

Nomenclature - based on hydrocarbons:

CH ₄	methane	C ₅ H ₁₂	pentane
C ₂ H ₆	ethane	C ₆ H ₁₄	hexane
C ₃ H ₈	propane	C7H16	heptane
C ₄ H ₁₀	butane	C ₈ H ₁₈	octane, etc