Atoms, Elements, and the Periodic Table (Chapter 2)

Atomic Structure

1. Historical View - Dalton's Atomic Theory

Based on empirical observations, formulated as *Laws* of:

Conservation of Mass Definite Proportions Multiple Proportions

Summary of Dalton's theory:

- matter is composed of small particles called atoms
- in chemical reactions atoms are indestructible
- atoms of different elements have different masses
- atoms of the same and/or different elements combine to form new substances (i.e., compounds)
- in a given compound, the constituent atoms are always combined in the same fixed numerical ratio
- 2. "Modern" View

atom consists of: central *nucleus* containing *protons* (+) and *neutrons* with outer shells of *electrons* (-)

most of an atom's mass is in the nucleus -- relative masses:

neutron \approx proton \approx 1 amu electron \approx 10⁻⁴ amu (amu = atomic mass unit = 1.66 x 10⁻²⁴ g) 3. Atomic Masses and Isotopes

- Z = *atomic number* of an element = # protons in nucleus
 - e.g., carbon is atomic number 6 -- all carbon atoms have 6 protons
- A = *mass number* (often omitted) = # protons + # neutrons
- Y = *charge* (on an ion) = # protons # electrons

isotopes - atoms of the same element with different mass numbers

e.g., natural carbon has 2 isotopes (2 types of C atoms):

Isotope	symbol	relative abundance	protons	neutrons	mass number
carbon-12	12 _C	99%	6	6	12
carbon-13	13 _C	1%	6	7	13

atomic mass (*atomic weight*) of an element is based on the ¹²C scale:

1 atom of ${}^{12}C$ is defined as *exactly* 12 amu

since most elements are actually mixtures of isotopes, the *atomic mass* (or weight) is really an "average" atomic mass

e.g., atomic mass of chlorine, Cl, is 35.4527 amu

35CI	75.77%	34.9689 amu
37 _{Cl}	24.23%	36.9659 amu
"weighted	average"	
(0.7577 x 3	34.9689) +	$(0.2423 \times 36.9659) = 35.4527 (\approx 35.45)$

Normally, chemists are concerned with such "average" atomic masses

The Mole Concept and Molar Mass

1. Avogadro's Number -- The Chemist's "Dozen"

 N_0 = number of atoms in *exactly* 12 grams of carbon-12

= 6.022 x 10²³ "things" {a *very* large number ! }

this is a conversion factor, just like 12 things per dozen, e.g.:

mass of one atom of carbon-12 = $(12 \text{ g}) / (6.022 \text{ x } 10^{23} \text{ atoms})$ = $1.99 \text{ x } 10^{-23} \text{ g/atom}$

2. The Mole -- How Chemists "Count"

One Mole of a substance contains an Avogadro's Number of formula units

1 mole = 6.022×10^{23} formula units

e.g., 1 mole of iron contains 6.022×10^{23} Fe atoms

3. Molar Mass

Molar Mass = the mass (in grams) of one mole of a substance

Since 12 grams of 12 C is defined as 1 mole of 12 C and the atomic masses of other elements are defined relative to that, then....

the molar mass of an element = its atomic mass in grams/mole

- e.g., from the periodic table, the "atomic mass" of Al is 26.98 What does this mean?
 - mass of one Al atom = 26.98 amu
 - molar mass of AI = 26.98 g/mole (mass of one mole of AI)

The Periodic Table

1. General arrangement - increasing atomic number within:

groups: vertical columns (also called families)

periods: horizontal rows

2. Terminology - parts of the periodic table

3. Types of elements - by physical properties

metals:	shinny, malleable, c good electrical conc	luctile solids with high mp and bp luctors
nonmetals:	gases, liquids, or low-melting solids non-conductors of electricity	
diatomic el	ements: H ₂ , O ₂	p, N ₂ , F ₂ , Cl ₂ , Br ₂ , I ₂
metalloids:	intermediate proper	ties, often semiconductors (e.g., Si)

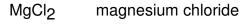
lons and the Periodic Table

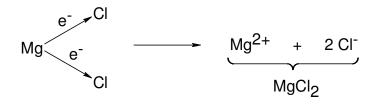
1. Elements combine to form compounds -- two general types

Molecular Compounds -- more later in Chapter 3! atoms linked together by "chemical bonds" in *discrete* electrically neutral particles called *molecules*

e.g., H₂O CO₂ PCl₃ C₁₂H₂₂O₁₁

Ionic Compounds


result from transfer of one or more electrons from one atom to another to yield oppositely-charged particles called *ions*


cation = positive ion *anion* = negative ion

there are not discrete molecules -- the ions are held together by electrostatic forces in a regular, 3-dimensional pattern called a *crystalline lattice*

e.g., LiF lithium fluoride

2. Relationship to Periodic Table

General trends (Figure 2.14)

lonic compounds usually involve *metals* and *nonmetals*

group IA (1)	+1 cations	Li+, Na+, K+,	
		a a a	

group IIA (2) +2 cations Be^{2+} , Mg^{2+} , Ca^{2+} ,

other metals may form more than one cation, e.g.:

Fe^{2+} and Fe^{3+}	Sn ²⁺ and Sn ⁴⁺		
group VIA (16)	-2 anions	O ²⁻ , S ²⁻ , Se ²⁻ ,	
group VIIA (17)	-1 anions	F⁻, Cl⁻, Br⁻,	

Molecular compounds usually result from the combination of two *nonmetals and/or metalloids*

e.g., PH₃ AsF₅ HBr

some nonmetallic elements actually exist as molecular compounds

e.g., the diatomics (H₂, O₂, N₂, etc. as listed before) also: P₄, As₄, S₈, Se₈