
Chemical Bonding and Molecular Structure (Chapter 10)

Molecular Structure

1. General Summary -- Structure and Bonding Concepts

2. VSEPR Theory -- simple prediction of molecular shapes

Valence Shell Electron Pair Repulsion Theory

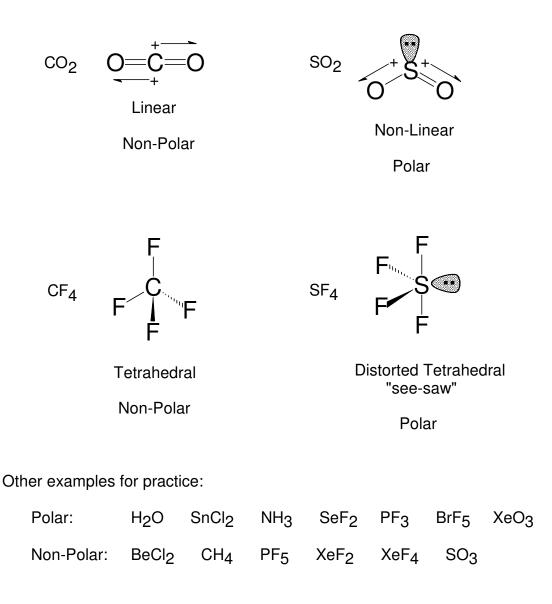
Hypothesis -- The structure of a molecule is that which minimizes the repulsions between pairs of electrons on the central atom.

"Steric Number" (SN) = # of atoms attached to central atom (aka "electron groups) + # of lone pairs on central atom

SN		Arrangement	Mol	ecular Shape	Examples
2		linear 180°	AX2	linear	BeCl ₂ , CO ₂
3		trigonal planar 120°	AX ₃ AEX ₂	trigonal planar bent	BCl ₃ , CH ₃ + SnCl ₂ , NO ₂ -
4		tetrahedral 109.5°	AX ₄ AEX ₃ AE ₂ X ₂	tetrahedral pyramidal bent	CH ₄ , PO ₄ ³⁻ NH ₃ , ClO ₃ ⁻ H ₂ O, SeF ₂
5	e a a	trigonal bipyramidal 120°&90°	AX_5 AEX_4 AE_2X_3 AE_3X_2	trig bipyramid "see saw" T-shaped linear	PF ₅ , SeCl ₅ + SF ₄ , BrF ₄ + ClF ₃ , XeO ₃ ²⁻ XeF ₂ , ICl ₂ ⁻
6		octahedral 90°	AX ₆ AEX ₅ AE ₂ X ₄	octahedral square pyramid square planar	SF ₆ , PCl ₆ - BrF ₅ , SF ₅ - XeF ₄ , IF ₄ -

(A = central atom, X = terminal atom, E = lone pair)

Related aspects:

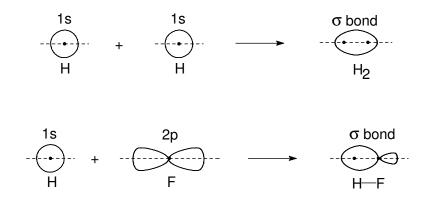

- In *trigonal bipyramid* structures, lone e⁻ pairs adopt equatorial positions (e)
- Order of repulsions: Lp Lp > Lp Bp > Bp Bp (Predicts distortions from ideal geometries)

3. Polarity of Molecules -- can predict from molecular shape

Polar or Non-Polar?

In *very symmetrical structures* (e.g., CO₂ or CF₄), the individual bond dipoles effectively cancel each other and the molecule is *non-polar*.

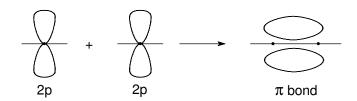
In *less symmetrical structures* (e.g., SO_2 and SF_4), the bond dipoles do not cancel and there is a net dipole moment which makes the molecule *polar*.



Valence Bond Theory

1. Basic Concept

Covalent Bonds result from overlap of atomic orbitals


for example, consider the H_2 and HF molecules:

Two types of covalent bonds:

- σ (sigma) bond "head-to-head" overlap along the bond axis
- π (pi) bond

"side-to-side" overlap of p orbitals:

single bond -- always a σ bond

double bond $\mbox{ -- combination of one }\sigma$ bond and one π bond

triple bond -- combination of one σ bond and two π bonds

2. Hybrid Atomic Orbitals

Q	uestion:	Description of bonding in CH ₄ molecule?					
	experimental fact CH ₄ is tetrahedral (H-C-H angle = 109.5°)						
	VSEPR the	eory "explains" this 4 e ⁻ pairs, \therefore tetrahedral					
	<i>however</i> , if only <i>s</i> and <i>p</i> orbitals are used, the angles ought to be 9 since the <i>p</i> orbitals are mutually perpendicular!						
<i>Solution</i> : m		modify the theory of atomic orbitals and use:					
	Hybridizati	 on: combination of 2 or more atomic orbitals on the same atom to form a new set of "Hybrid Atomic Orbitals" used in bonding. 					

Types of Hybrid Orbitals

Atomic Orbitals	Hybrid Orbitals	Geometry	Unhybridized <i>p</i> Orbitals
one s + one p	two <i>sp</i>	Linear (180°)	2
one s + two p	three <i>sp</i> ²	Trigonal planar (120°)	1
one s + three p	four <i>sp³</i>	Tetrahedral (109.5°)	0

[{] *Note*: combination of *n* AO's yields *n* Hybrid Orbitals }

Example: in CH₄, C is sp^3 hybridized:

С	$\uparrow\downarrow$	\uparrow	\uparrow	 ground state - valence shell orbital diagram
	2s		2р	(predicts 90° angles wrong!)
С		<u>↑</u> sp ³		 <i>hybridized state</i> (predicts 109.5° angles right!)

3. Examples

Use valence bond theory to describe the bonding in the following.

(Draw clear 3-D pictures showing orbital overlap, etc.)

H2O,	NH ₃ ,	CH ₄ ,	PF3	(simple σ bonds and lone pairs)
1.20,	· · · ·,	\bigcirc		

- H₂CNH double bond like H₂CCH₂ (ethene) and H₂CO (formaldehyde)
- HCN triple bond like HCCH (ethyne) and N₂ (nitrogen)

Molecular Orbital Theory

1. Comparison of VB and MO Theory

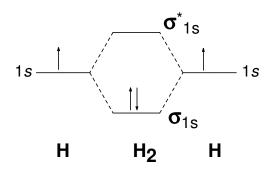
Valence Bond Theory ("simple" but somewhat limited)

e⁻ pair bonds between two atoms using overlap of *atomic orbitals* on two atoms

Molecular Orbital Theory (more general but "complex")

all e⁻'s in molecule fill up a set of *molecular orbitals* that are made up of linear *combinations of atomic orbitals on two or more atoms*

MO's can be:


"localized"	combination of AO's on two atoms,
	as in the diatomic molecules
"delocalized"	combination of AO's on three or more atoms as in benzene (C ₆ H ₆)

2. Molecular Orbitals for simple diatomic molecules (H₂ and He₂)

in H₂ the 1*s* atomic orbitals on the two H atoms are combined into:

a bonding MO -- σ_{1s} and an antibonding MO -- σ_{1s}^{*}

MO energy level diagram for H_2 (only the bonding MO is filled):

In contrast, the MO diagram for the nonexistent molecule, He₂ shows that both bonding and antibonding MO's are filled:

Bond Order = 1/2 [(# bonding e⁻'s) - (# antibonding e⁻'s)]

for H ₂	= 1/2 [2 - 0] = 1	(a single bond)
for He ₂	= 1/2 [2 - 2] = 0	(no net bonding interaction)

3. MO's for 2nd Row Diatomic Molecules (e.g., N₂, O₂, F₂, etc.)

AO combinations -- from s orbitals and from p orbitals

MO energy level diagram -- Page 467

e.g., Fill in MO diagram for C_2 , N_2 , O_2 , F_2 , and Ne_2 and determine bond order for each:

molecule	C ₂	N ₂	02	F ₂	Ne ₂
bond order	2	3	2	1	0

General "rules"

- electrons fill the lowest energy orbitals that are available
- maximum of 2 electrons, spins paired, per orbital
- Hund's rule of maximum unpaired spins applies*

*accounts for paramagnetism of O₂ (VB theory fails here!)

4. Delocalized Molecular Orbitals

By combining AO's from three or more atoms, it is possible to generate MO's that are "delocalized" over three or more atoms

Examples:

Resonance in species like formate ion HCO_2^- and benzene (C_6H_6) can be "explained" with a single MO description containing delocalized π bonds.