Matter, Measurement, and Problem Solving (Chapter 1)

Some Elementary Topics and Terms

1. What is Chemistry? the study of matter and its changes the "central science"

2. The Scientific Method

OBSERVATION (empirical facts, then "laws") CBSERVATION (hypothesis and theory)

3. Matter and Energy

matter occupies space and has mass (*mass* is the amount of matter, *weight* is force of gravitational attraction on the mass)

energy is ability to do work: kinetic (motion) or potential (stored)

4. Heat and Temperature

Heat is a form of energy (internal motions of atoms and molecules)

Temperature is a measure of the intensity of heat

Elements, Compounds, and Mixtures

1. Classification of Matter

Mixtures (homogeneous or heterogeneous) *Pure Substances* (elements and compounds)

Atom: smallest component of an element

Molecule: combination of two or more atoms smallest component of a compound

2. The "Language of Chemistry"

"alphabet"	symbols for the elements, e.g. C, N, F, Mg, Fe, etc.				
"words"	<i>chemical formulas</i> , e.g. H_2O , N_2 , $Fe_2(CO_3)_3$, etc.				
counting atoms in formulas: 1 molecule of H ₂ O contains 2 hydrogen atoms and 1 oxygen atom the formula Fe ₂ (CO ₃) ₃ represents: 2 iron atoms, 3 carbon atoms, and 9 oxygen atoms					
"sentences"	chemical equations (reactants and products)				
Mg(OH) _{2 (}	s) + 2 HCl (aq) \longrightarrow MgCl _{2 (aq)} + 2 H ₂ O (I)				
<i>coefficients</i> are used to "balance" the equation <i>subscripts</i> indicate states of matter (optional)					

balanced equation:

same number of atoms of each element on both sides of arrow

Units of Measurement

1. Systèm International units

Base units:	length m mass kg		meter (39.37 inches) kilogram (2.205 lb)		
	time	S	second		
	temp	K	Kelvin		

Derived units: e.g., volume = length x length x length (e.g., m^3) 1 mL = cm³ and 1 L = 1,000 mL = 1,000 cm³

2. The Metric System (Table 1.2)

KNOW Decimal Multipliers and Metric Prefixes

e.g., $k = kilo = 10^3$ 1 km = 10³ m $n = nano = 10^{-9}$ 1 nm = 10⁻⁹ m 3. Metric - English Conversions (Table 1.3)

KNOW at least:

length: 1 inch = 2.54 cm or 1 m = 39.37 inches mass: 1 kg = 2.205 lb or 1 lb = 454 g volume: 1 L = 1.057 qt or 1 gal = 3.786 L

4. Temperature Scales (Figure 1.11)

Fahrenheit	°F	$T_F = (9/5) T_C + 32$
Celsius	°C	$T_{C} = (5/9) (T_{F} - 32)$
Kelvin	K	$T_{K} = T_{C} + 273.15$

Calculations and Significant Figures

1. Accuracy and Precision

accuracy - how close to the "true" value? (*systematic* errors)

precision - how reproducible is the measurement? (*random* errors)

2. Significant Figures

of "significant figures" shows degree of uncertainty in measurement

e.g., a certain distance, in inches, could be 11.1, or 11.08, or 11.083 depending on how carefully it was measured (to 3, 4, or 5 sig figs)

3. Exact Numbers

values that are exactly *counted* or *defined* can be assumed to have an infinite number of sig figs,

e.g., 25 people or 1 foot = 12 inches

4. Calculations with Sig Figs

multiplication and division

look for factor with fewest # of sig figs

addition and subtraction

look for value with fewest # of decimal places

example:

 $\frac{12.5 + 1.247}{3.6 \times 0.004215} = "905.95755" = 906 = 9.1 \times 10^{2}$ $\frac{13.7}{0.015}$

- 5. Unit Conversions: the **FACTOR LABEL** method (aka "Dimensional Analysis")
 - e.g., "48 inches is 4 ft" how is this shown in a calculation?

given quantity × conversion factor(s) = desired quantity (starting units) (target units)

 $(48 \text{ inches}) \times (1 \text{ ft/12 inches}) = 4 \text{ ft}$

now, what is 48 inches in meters?

(48 in) x (2.54 cm/in) x (1 m/100 cm) = 1.22 m

another example: convert 25 miles/gal to km/L:

25 mi	5,280 ft	12 in	2.54 cm	10 ⁻² m	1 km	1 gaí		10.6 <mark>km</mark>
gat	mi	_ft	jn	CM	10 ³ m	3.785 <mark>L</mark>	=	L

Density and Specific Gravity

- *density*: d = mass/volume (usually g/cm³ or g/mL)
 - e.g., density of water is 1.00 g/cm³ or 1.00 g/mL

density of iron is 7.86 g/mL

- *specific gravity*: d_{substance} / d_{water} (a dimensionless quantity)
 - e.g., specific gravity of iron is 7.86 (i.e., iron is 7.86 times more dense than water)