Chem 10113, Quiz 7

Answer Key

December 11, 2019

	IA																	VIIIA
(1)																	(18)	
	1																	2
1	H	IIA											IIIA	IVA	VA	VIA	VIIA	He
	1.0080	(2)	1										(13)	(14)	(15)	(16)	(17)	4.0026
2	3	4											5	6	7	8	9	10
	Li	Be											В	C	N	O	F	Ne
	6.9410	9.0122											10.811	12.011	14.007	15.999	18.998	20.179
3	11	12											13	14	15	16	17	18
	Na	Mg	IIIB	IVB	VB	VIB	VIIB		. VIIIB .		IB	IIB	Al	Si	P	S	Cl	Ar
	22.990	24.305	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982	28.086	30.974	32.066	35.453	39.948
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098	40.078	44.956	47.880	50.942	51.996	54.938	55.847	58.933	58.690	63.546	65.380	69.723	72.610	74.922	78.960	79.904	83.800
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.468	87.620	88.906	91.224	92.906	95.940	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.20	192.22	195.09	196.97	200.59	204.38	207.20	208.98	208.98		222.02
7	87	88	89	104	105	106	107											
	Fr	Ra	Ac	Unq	Unp	Unh	Uns											
	223.02	226.03	227.03	261.11	262.11	263.12	262.12											

- 1. (2 points) Among the following substances: HBr, Al₂O₃, HClO₂, Ba(OH)₂, As₂O₅, HONH₂, KNO₃, SiH₄ which one best matches each description? strong base: Ba(OH)₂ acidic anhydride: As₂O₅ weak acid: HClO₂
- 2. (2 points) Molybdenum hexafluoride, MoF₆, is a liquid at room temperature that does not conduct electricity and boils at 34 °C. In the solid state, it forms colorless crystals that melt at 17 °C. The most likely crystal type (i.e., ionic, metallic, etc.) for solid MoF₆ is molecular.
- 3. (2 point) Boron carbide (B₄C) is a hard, ceramic material that melts above 2700 °C and does not conduct electricity as a solid or when melted. The most likely crystal type (i.e., ionic, metallic, etc.) for B₄C is covalent (network).
- 4. (6 points) **SHOW ALL WORK.** The element silicon (Si) crystallizes in a "diamond" cubic unit cell in which there are eight Si atoms per unit cell. The edge dimension (*l*) of the unit cell is 543.1 pm (*pico*meters) and the specific gravity of Si is 2.329. **Determine** (i.e., calculate) the value of Avogadro's number using any information in this problem and/or the periodic table.

volume of unit cell = $(5.431 \times 10^{-8} \text{ cm})^3 = 1.602 \times 10^{-22} \text{ cm}^3$ $(1.602 \times 10^{-22} \text{ cm}^3) (2.329 \text{ g/cm}^3) (1 \text{ mole Si} / 28.086 \text{ g}) = 1.328 \times 10^{-23} \text{ mole Si}$ Avogadro's number = $(8 \text{ atoms}) / (1.328 \times 10^{-23} \text{ mole}) = 6.022 \times 10^{23} \text{ atoms/mole}$ 5. (6 points) **SHOW ALL WORK.** A 50.00 mL portion of a solution containing La³⁺ was treated with excess sodium oxalate to precipitate La₂(C₂O₄)₃ (molar mass = 541.9). The precipitate was carefully collected by filtration, re-dissolved in acid, and then titrated with 41.15 mL of 0.0825 M KMnO₄ according to the following balanced redox equation. Determine the molarity of La³⁺ in the original solution.

$$5 \text{ C}_2\text{O}_4^{2\text{-}} + 2 \text{ MnO}_4^- + 16 \text{ H}^+ \longrightarrow 10 \text{ CO}_2 + 2 \text{ Mn}^{2\text{+}} + 8 \text{ H}_2\text{O}$$
 (41.15 mL) (0.0825 mole MnO $_4^-$ / 1000 mL) (5 mole C $_2\text{O}_4^{2\text{-}}$ / 2 mole MnO $_4^-$) = 8.487 x 10⁻³ mole C $_2\text{O}_4^{2\text{-}}$ (8.487 x 10⁻³ mole C $_2\text{O}_4^{2\text{-}}$) (2 mole La³⁺ / 3 mole C $_2\text{O}_4^{2\text{-}}$) = 5.658 x 10⁻³ mole La³⁺

- $(8.487 \times 10^{-3} \text{ mole } C_2O_4^{2-})$ (2 mole La³⁺ / 3 mole C₂O₄²⁻) = 5.658 x 10⁻³ mole La³⁺ molarity of La³⁺ = $(5.658 \times 10^{-3} \text{ mole } La^{3+})$ / 0.0500 L = 0.113 M
- 6. (4 points) For each of the following aqueous-solution reactions, *complete and balance the molecular equation* and also write the *balanced*, <u>net ionic</u> equation. Use appropriate subscripts [(s), (aq), (g), etc.] to indicate the phase of each compound or ion.
- 7. Tantalum (Ta) crystallizes in a body-centered cubic lattice in which the edge dimension (*l*) of the unit cell is 0.3306 nm (*nano*meters).
 - (a) (4 points) **SHOW ALL WORK.** Determine the atomic radius (r) of Ta in pm (*pico*meters). In a body-centered cubic lattice, there are 2 atoms per unit cell. The atoms are in contact along the body diagonal of the cube. (In the figure, d = edge dimension of the cube, f = face diagonal, b = body diagonal.)

$$d^2 + f^2 = b^2$$
 where: $b = 4 \text{ r}$ and $f = (2)^{1/2} d$
 $d^2 + 2 d^2 = (4 \text{ r})^2$
 $3 d^2 = (4 \text{ r})^2$ $\therefore r = (3)^{1/2} d / 4$
so, $r = (3)^{1/2} (330.6 \text{ pm}) / 4 = 143 \text{ pm}$

(b) (4 points) **SHOW ALL WORK.** Determine the specific gravity of Ta.

specific gravity = density of Ta in g/cm³ mass of Ta per unit cell =
$$(2 \text{ atoms}) (1 \text{ mole} / 6.022 \times 10^{23} \text{ atoms}) (180.95 \text{ g/mole})$$
 = $6.010 \times 10^{-22} \text{ g}$ volume of unit cell = $(3.306 \times 10^{-8} \text{ cm})^3 = 3.613 \times 10^{-23} \text{ cm}^3$ density = $(6.010 \times 10^{-22}) / (3.613 \times 10^{-23}) = 16.6 \text{ g/cm}^3$