Chem 10113, Quiz 7										N	Name:						
December 11, 2019													(Please Print)				
	IA																
	(1)																
1	I H	IIA											IIIA	IVA	VA (15)	VIA	
	3	4											5	6	7	8	
2	Li 6.9410	Be 9.0122											B 10.811	C 12.011	N 14.007	O 15.999	
	11	12											13	14	15	16	
3	Na 22.990	Mg 24.305	IIIB (3)	IVB (4)	VB (5)	VIB (6)	VIIB (7)	(8)	. VIIIB . (9)	(10)	IB (11)	IIB (12)	Al 26.982	Si 28.086	P 30.974	S 32.066	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	
4	K 39.098	Ca 40.078	Sc 44.956	Ti 47.880	V 50.942	Cr 51.996	Mn 54.938	Fe 55.847	Co 58.933	Ni 58.690	Cu 63.546	Zn 65.380	Ga 69.723	Ge 72.610	As 74.922	Se 78.960	
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	
5	Rb 85.468	Sr 87.620	Y 88.906	Zr 91.224	Nb 92.906	Mo 95.940	Tc 98.907	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd 112.41	In 114.82	Sn 118.71	Sb 121.75	Te 127.60	
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	

VIIIA (18) 2 **He**

4.0026

10

Ne

20.179

18

Ar

39.948

36 **Kr**

83.800

54

Xe

31.29

86

Rn

222.02

VIIA (17)

9

F

18.998

17

Cl

35.453

35

Br

79.904

53

Ι

126.90

85

At

209.99

1. (2 points) Among the following substances: HBr, Al₂O₃, HClO₂, Ba(OH)₂, As₂O₅, HONH₂, KNO₃, SiH₄ which one best matches each description?

104

Unq

261.11

87

Fr

223.02

7

88

Ra

226.03

89

Ac

227.03

105

Unp

262.11

106

Unh

263.12

107

Uns

262.12

strong base: _____ acidic anhydride: _____ weak acid: _____

- 2. (2 points) Molybdenum hexafluoride, MoF₆, is a liquid at room temperature that does not conduct electricity and boils at 34 °C. In the solid state, it forms colorless crystals that melt at 17 °C. The most likely crystal type (i.e., ionic, metallic, etc.) for solid MoF₆ is
- (2 point) Boron carbide (B₄C) is a hard, ceramic material that melts above 2700 °C and does not conduct electricity as a solid or when melted. The most likely crystal type (i.e., ionic, metallic, etc.) for B₄C is ______.
- 4. (6 points) **SHOW ALL WORK.** The element silicon (Si) crystallizes in a "diamond" cubic unit cell in which there are eight Si atoms per unit cell. The edge dimension (*l*) of the unit cell is 543.1 pm (*picometers*) and the specific gravity of Si is 2.329. *Determine* (i.e., calculate) the value of Avogadro's number using any information in this problem and/or the periodic table.

5. (6 points) SHOW ALL WORK. A 50.00 mL portion of a solution containing La^{3+} was treated with excess sodium oxalate to precipitate $La_2(C_2O_4)_3$ (molar mass = 541.9). The precipitate was carefully collected by filtration, re-dissolved in acid, and then titrated with 41.15 mL of 0.0825 M KMnO₄ according to the following balanced redox equation. Determine the molarity of La^{3+} in the original solution.

 $5 \text{ C}_2\text{O}_4^2$ + 2 MnO_4 + $16 \text{ H}^+ \longrightarrow 10 \text{ CO}_2 + 2 \text{ Mn}^2$ + $8 \text{ H}_2\text{O}$

- 6. (4 points) For each of the following aqueous-solution reactions, *complete and balance the molecular equation* and also write the *balanced*, <u>net ionic</u> equation. Use appropriate subscripts [(s), (aq), (g), etc.] to indicate the phase of each compound or ion.
 - (a) $(NH_4)_2SO_4(aq) + KOH_{(aq)} \longrightarrow$ *net ionic*:
 - (b) $Fe(C_2H_3O_2)_{3(aq)} + H_2SO_{4(aq)} \longrightarrow$ *net ionic*:
- 7. Tantalum (Ta) crystallizes in a body-centered cubic lattice in which the edge dimension (*l*) of the unit cell is 0.3306 nm (*nano*meters).
 - (a) (4 points) SHOW ALL WORK. Determine the atomic radius (r) of Ta in pm (*picometers*).

(b) (4 points) SHOW ALL WORK. Determine the specific gravity of Ta.