Chem	10113,	Quiz	7
------	--------	------	---

December 5, 2018

Name:	
	(Please Print)

	IA																	VIIIA
	(1)																	(18)
	1																	2
1	Ĥ	TT A											TITA	T3.7.A	3.7.A	3.7T A	3.7TT A	He
1	1.0080	IIA (2)											IIIA (13)	IVA (14)	VA (15)	VIA (16)	VIIA (17)	4.0026
	3	4											5	6	7	8	9	10
2		Be											В	C	N	O	F	Ne
	6.9410	9.0122											10.811	12.011	14.007	15.999	18.998	20.179
	11	12											13	14	15	16	17	18
3	Na	Mg	IIIB	IVB	VB	VIB	VIIB		. VIIIB .		IB	IIB	Al	Si	P	S	Cl	Ar
	22.990		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982		30.974			39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
•	39.098	40.078	44.956	47.880	50.942		54.938		58.933					72.610	74.922	78.960	79.904	83.800
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
_			Y				-		-	-		-						
5	Rb 85.468	Sr 87.620		Zr 91,224	Nb 92.906	Mo 95.940	Tc 98.907	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd	In 114.82	Sn 118.71	Sb	Te	I 126.90	Xe 131,29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	~~	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.20	192.22	195.09	196.97	200.59	204.38	207.20	208.98	208.98	209.99	222.02
	87	88	89	104	105	106	107											
7	Fr	Ra	Ac	Unq	Unp	Unh	Uns											
	223.02				262.11													

- 1. (2 points) Quartz glass, SiO₂, which is the major component of ordinary sand, melts above 1700 °C and does not conduct electricity as a solid or when melted. The most likely crystal type (i.e., ionic, metallic, etc.) for SiO₂ is _______.
- 2. (3 points) Among the following substances: HClO₄, K₂O, HCN, CsOH, As₂O₅, HBr, C₅H₅N, which one best matches each description? strong base: ____ acidic anhydride: ____ weak acid: ____
- 3. (2 points) Write a complete, *balanced chemical equation* to show how aziridine (structure below) behaves as a *weak base* in aqueous solution.

$$H_2C$$
 H_2C
 $N-H$

4. (5 points) **SHOW ALL WORK.** The element germanium (Ge) crystallizes in a type of cubic unit cell that is different from any that we have discussed in class. The edge dimension of the unit cell is 565.8 pm (*pico*meters) and the specific gravity of Ge is 5.323. Determine the number of Ge atoms in the unit cell.

5.	(5 points) Identify each of the following solids by its crystal type (metallic, ionic, etc.).											
	(a) CaO _(s)		(d) SiF _{4(s)}									
	(b) BN _(s)		(e) Ca _(s)									
	(c) CH ₃ OH _(s)		(f) Kr _(s)									
6.	Lakes that have been acidified by acid rain (containing H ₂ SO ₄ and HNO ₃) can be neutralized by a process called liming, i.e., addition of lime (CaCO ₃).											
	(a) (2 points) Write a <i>balanced <u>net ionic</u> equation</i> for the liming process.											
		ely neutralize a 15-bill		CO ₃ (molar mass = 100.1) is 5 x 10 ⁻⁶ M in H ₂ SO ₄ and 2.5								
7.	(1 point) Which solid has	= =										
	$C_6H_{6(s)}$ G	$e_{(s)}$ $H_2O_{(s)}$	$Al_{(s)}$	S(s, graphite)								
8.	The element molybdenum (Mo) crystallizes in a body-centered cubic lattice in which the edge dimension (l) of the unit cell is 0.3141 nm ($nano$ meters).											
	(a) (2 points) SHOW A	LL WORK. Determin	ne the atomic radius (r)	of Mo in pm (picometers).								
	(b) (3 points) SHOW A part a is not needed		ine the specific gravity	of Mo. (<i>Note</i> : The answer to								