Chem 10113, Quiz 6 ## November 14, 2018 ## **Answer Key** | | IA
(1) | | | | | | | | | | | | | | | | | VIIIA
(18) | |---|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | 1 | 1
H | IIA | | | | | | | | | | | IIIA | IVA | VA | VIA | VIIA | 2
He | | | 1.0080 | (2)
4 | | | | | | | | | | | (13)
5 | (14)
6 | (15)
7 | (16)
8 | (17)
9 | 4.0026 | | 2 | Li
6.9410 | Be
9.0122 | | | | | | | | | | | B
10.811 | C
12.011 | N
14.007 | O
15.999 | F
18.998 | Ne
20.179 | | 3 | 11
Na | 12
Mg | IIIB | IVB | VB | VIB | VIIB | | . VIIIB . | | . IB | IIB | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | | | 22.990
19 | 24.305
20 | (3)
21 | (4)
22 | (5)
23 | (6)
24 | (7)
25 | (8)
26 | (9)
27 | (10)
28 | (11)
29 | (12) | 26.982 | 28.086 | 30.974 | 32.066
34 | 35.453
35 | 39.948 | | 4 | K
39.098 | Ca 40.078 | Sc
44.956 | Ti
47.880 | V
50.942 | Cr 51.996 | Mn 54.938 | Fe 55.847 | Co 58.933 | Ni
58.690 | Cu 63.546 | Zn 65.380 | Ga
69.723 | Ge 72.610 | As 74.922 | Se
78.960 | Br
79.904 | Kr
83.800 | | 5 | 37
Rb
85.468 | 38
Sr
87.620 | 39
Y
88.906 | 40
Zr
91.224 | 41
Nb
92.906 | 42
Mo
95.940 | 43
Tc
98.907 | 44
Ru
101.07 | 45
Rh
102.91 | 46
Pd
106.42 | 47
Ag
107.87 | 48
Cd
112.41 | 49
In
114.82 | 50
Sn
118.71 | 51
Sb
121.75 | 52
Te
127.60 | 53
I
126.90 | 54
Xe
131.29 | | 6 | 55
Cs
132.91 | 56
Ba
137.33 | 57
La
138.91 | 72
Hf
178.49 | 73
Ta
180.95 | 74
W
183.85 | 75
Re
186.21 | 76
Os
190.20 | 77
Ir
192.22 | 78
Pt
195.09 | 79
Au
196.97 | 80
Hg
200.59 | 81
Tl
204.38 | 82
Pb
207.20 | 83
Bi
208.98 | 84
Po
208.98 | 85
At
209.99 | 86
Rn
222.02 | | 7 | 87
Fr
223.02 | 88
Ra
226.03 | 89
Ac
227.03 | 104
Unq
261.11 | 105
Unp
262.11 | 106
Unh
263.12 | 107
Uns
262.12 | | | | | | | | | | | | 1. (4 points) The bromine-centered molecule O₂BrF₃ is known from experiment to be *polar*. Write a complete Lewis electron dot formula for O₂BrF₃ and clearly draw its 3-D structure as predicted by VSEPR Theory (and consistent with its polarity). 2. (4 points) Hydroxide ion reacts with carbon dioxide to produce the hydrogen carbonate ion as shown below. Write *complete Lewis electron dot formulas* for all three species this reaction. $$OH^{-} + CO_{2} \longrightarrow HCO_{3}^{-}$$ $$[H-\ddot{O}:]^{-} : \ddot{O}=C=\ddot{O}:$$ $$H-\ddot{O}-C \longrightarrow H-\ddot{O}-C H$$ - 3. (4 points) Refer to the same molecules and ions in questions 1 and 2 above. - (a) The hybridization at C is sp in CO_2 and sp^2 in HCO_3^- . - (b) The hybridization at Br in O₂BrF₃ is sp³d - (c) The C-O bond order in HCO₃ is 1.5 (or maybe 1.33) - (d) The 3-D shape of O₂BrF₃ is best described as trigonal bipyramidal 4. (3 points) The molecular structure of caffeine is shown below. (The lower case letters **a-d** are simply labels to designate certain atoms.) Complete the dot formula by inserting all of the *lone pairs* that are not shown. State the hybridization at each of the atoms labelled **a** through **d** in the structure. 5. Consider the simple organic compound C₂H₃NO, whose skeletal framework is indicated by dotted lines in the figure below. The numbers on the structure are just meant to distinguish the carbon atoms in the questions below. - (a) (2 point) In the space above, complete the Lewis electron dot formula for C₂H₃NO. - (b) (1 point) The O— C^1 — C^2 bond angle is *about* 120 degrees. - (c) (1 point) The C²— N—H bond angle is *about* 120 degrees. - (d) (7 points) **Describe the bonding** in C_2H_3NO using **Valence Bond concepts** (i.e., hybrid atomic orbitals, etc.). **Draw and clearly label one or more pictures** to show the **types of orbitals** that you are using to form the various σ and/or π bonds. Also clearly show the 3-D structure of the molecule, including the relative geometric arrangements around O, C^1 , C^2 , and N.