Chem 10113, Quiz 6											Name:									
November 20, 2019													(Please Print)							
	IA																	VIIIA		
	(1)																	(18)		
1	I H	IIA											IIIA	IVA	VA	VIA	VIIA	2 He		
	1.0080	(2)											(13)	(14)	(15)	(16)	(17)	4.0026		
	3	4											5	6	7	8	9	10		
2	Li 6 9410	Be 9.0122											B 10.811	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.179		
	11	12											13	14	15	16	17	18		
3	Na	Mg	IIIB	IVB	VB	VIB	VIIB		. VIIIB .		IB	IIB	Al	Si	P	S	Cl	Ar		
-	22.990		(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982		30.974			39.948		
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		
	K 39.098	Ca 40.078	Sc 44.956	Ti 47.880	V 50.942	Cr 51.996	Mn 54.938	Fe 55.847	Co 58.933	Ni 58.690	Cu 63.546	Zn 65.380	Ga 69.723	Ge 72.610	As 74.922	Se 78.960	Br 79.904	Kr 83.800		
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54		
5	Rb 85.468	Sr 87.620	Y 88.906	Zr 91.224	Nb 92.906	Mo 95.940	Tc 98.907	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd 112.41	In 114.82	Sn 118.71	Sb 121.75	Te 127.60	I 126.90	Xe 131.29		
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86		
6	Cs 132.91	Ba 137.33	La 138.91	Hf 178.49	Ta 180.95	W 183.85	Re 186.21	Os 190.20	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.38	Pb 207.20	Bi 208.98	Po 208.98	At 209.99	Rn 222.02		
	87	88	89	104	105	106.00	107					_00.00	_000	_00		_00.00				
7	Fr	Ra	Ac	Unq	Unp	Unh	Uns													
	223.02			261.11	-	263.12	262.12													

1. A simple organic compound, C₃H₃NO, commonly known as acetyl cyanide, has a skeletal framework indicated by dotted lines in the figure below. The numbers on the structure are used to distinguish the carbon atoms in the following questions.

$$H \xrightarrow{H} C \xrightarrow{I} C \xrightarrow{I} C \xrightarrow{I} N$$

- (a) (2 point) In the space above, complete the Lewis electron dot formula for C₃H₃NO.
- (b) (1 point) The C^1 C^2 —O bond angle is *about* ______ degrees.
- (c) (1 point) The N— C^3 — C^2 bond angle is _____ degrees.
- (d) (6 points) **Describe the bonding** in C₃H₃NO using **Valence Bond concepts** (i.e., hybrid atomic orbitals, etc.). *Draw and clearly label one or more pictures* to show the *types of orbitals* that you are using to form the various σ and/or π bonds. Also, clearly draw the 3-D structure of the molecule, including the geometries around all of the C, O, and N centers.

2. (5 points) The nitrate anion reacts with the nitronium cation (NO_2^+) to produce dinitrogen pentoxide N₂O₅ as shown below. Write *complete Lewis electron dot formulas* for all three species in this reaction. (*Hint*: The skeletal structure of N₂O₅ is chemically consistent with the correct dot formulas of the reactants.)

 $NO_3^- + NO_2^+ \longrightarrow N_2O_5$

3. (3 points) The phosphorus-centered molecule F₂PBr₃ is known from experiment to be *non-polar*. Write a complete Lewis electron dot formula for F₂PBr₃ and clearly draw its 3-D structure as predicted by VSEPR Theory (and consistent with its polarity).

- 4. (7 points) Refer to the same molecules and ions in questions 2 and 3 above.
 - (a) The hybridization at N is _____ in NO_2^+ and _____ in NO_3^- .

(b) The 3-D shape of F₂PBr₃ is best described as .

- (c) The hybridization at P in F₂PBr₃ is _____.
- (d) The N-O bond order in NO₃ is _____.
- (e) Circle any of the following molecules or ions that are both isoelectronic and isostructural with the nitronium cation NO_2^+ .
 - CF_2 N_3 SO_2 O_3 HCN CO_2 OCN HNO_2