| Chem | 101 | 13, | Quiz | 6 |
|------|-----|-----|------|---|
|------|-----|-----|------|---|

November 14, 2018 (Please Print)

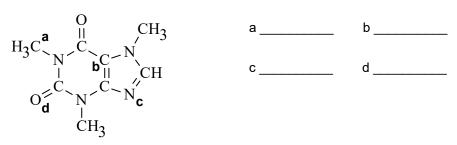
|   | 1101   |        | , _    | 010    |              |        |        |        |           |        |        |        |        | ,      |        |        |        |        |
|---|--------|--------|--------|--------|--------------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|   | IA     |        |        |        |              |        |        |        |           |        |        |        |        |        |        |        |        | VIIIA  |
|   | (1)    |        |        |        |              |        |        |        |           |        |        |        |        |        |        |        |        | (18)   |
|   | 1      |        |        |        |              |        |        |        |           |        |        |        |        |        |        |        |        | 2      |
| 1 | H      | IIA    |        |        |              |        |        |        |           |        |        |        | IIIA   | IVA    | VA     | VIA    | VIIA   | He     |
|   | 1.0080 | (2)    |        |        |              |        |        |        |           |        |        |        | (13)   | (14)   | (15)   | (16)   | (17)   | 4.0026 |
|   | 3      | 4      |        |        |              |        |        |        |           |        |        |        | 5      | 6      | 7      | 8      | 9      | 10     |
| 2 | Li     | Be     |        |        |              |        |        |        |           |        |        |        | В      | C      | N      | O      | F      | Ne     |
|   | 6.9410 |        |        |        |              |        |        |        |           |        |        |        | 10.811 | 12.011 | 14.007 | 15.999 | 18.998 | 20.179 |
|   | 11     | 12     |        |        |              |        |        |        |           |        |        |        | 13     | 14     | 15     | 16     | 17     | 18     |
| 3 | Na     | Mg     | IIIB   | IVB    | VB           | VIB    | VIIB   |        | . VIIIB . |        | IB     | IIB    | Al     | Si     | P      | S      | Cl     | Ar     |
|   | 22.990 | 24.305 | (3)    | (4)    | (5)          | (6)    | (7)    | (8)    | (9)       | (10)   | (11)   | (12)   | 26.982 | 28.086 | 30.974 | 32.066 |        | 39.948 |
|   | 19     | 20     | 21     | 22     | 23           | 24     | 25     | 26     | 27        | 28     | 29     | 30     | 31     | 32     | 33     | 34     | 35     | 36     |
| 4 | K      | Ca     | Sc     | Ti     | $\mathbf{V}$ | Cr     | Mn     | Fe     | Co        | Ni     | Cu     | Zn     | Ga     | Ge     | As     | Se     | Br     | Kr     |
|   | 39.098 | 40.078 | 44.956 | 47.880 | 50.942       | 51.996 | 54.938 | 55.847 | 58.933    | 58.690 | 63.546 | 65.380 | 69.723 |        | 74.922 | 78.960 | 79.904 | 83.800 |
|   | 37     | 38     | 39     | 40     | 41           | 42     | 43     | 44     | 45        | 46     | 47     | 48     | 49     | 50     | 51     | 52     | 53     | 54     |
| 5 | Rb     | Sr     | Y      | Zr     | Nb           | Mo     | Tc     | Ru     | Rh        | Pd     | Ag     | Cd     | In     | Sn     | Sb     | Te     | Ι      | Xe     |
|   | 85.468 | 87.620 | 88.906 | 91.224 | 92.906       | 95.940 | 98.907 | 101.07 | 102.91    | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.75 | 127.60 | 126.90 | 131.29 |
|   | 55     | 56     | 57     | 72     | 73           | 74     | 75     | 76     | 77        | 78     | 79     | 80     | 81     | 82     | 83     | 84     | 85     | 86     |
| 6 | Cs     | Ba     | La     | Hf     | Ta           | W      | Re     | Os     | Ir        | Pt     | Au     | Hg     | Tl     | Pb     | Bi     | Po     | At     | Rn     |
|   | 132.91 | 137.33 | 138.91 | 178.49 | 180.95       | 183.85 | 186.21 | 190.20 | 192.22    | 195.09 | 196.97 | 200.59 |        | 207.20 | 208.98 | 208.98 | 209.99 | 222.02 |
|   | 87     | 88     | 89     | 104    | 105          | 106    | 107    |        |           |        |        |        |        |        |        |        |        |        |
| 7 | Fr     | Ra     | Ac     | Unq    | Unp          | Unh    | Uns    |        |           |        |        |        |        |        |        |        |        |        |
|   | 223.02 | 226.03 |        | 261.11 |              | 263.12 | 262.12 |        |           |        |        |        |        |        |        |        |        |        |

1. (4 points) The bromine-centered molecule O<sub>2</sub>BrF<sub>3</sub> is known from experiment to be *polar*. Write a complete Lewis electron dot formula for O<sub>2</sub>BrF<sub>3</sub> and clearly draw its 3-D structure as predicted by VSEPR Theory (and consistent with its polarity).

2. (4 points) Hydroxide ion reacts with carbon dioxide to produce the hydrogen carbonate ion as shown below. Write *complete Lewis electron dot formulas* for all three species this reaction.

$$OH^- + CO_2 \longrightarrow HCO_3^-$$

3. (4 points) Refer to the same molecules and ions in questions 1 and 2 above.


(a) The hybridization at C is \_\_\_\_\_ in  $CO_2$  and \_\_\_\_ in  $HCO_3$ .

(b) The hybridization at Br in  $O_2BrF_3$  is \_\_\_\_\_\_.

(c) The C-O bond order in HCO<sub>3</sub> is \_\_\_\_\_\_.

(d) The 3-D shape of O<sub>2</sub>BrF<sub>3</sub> is best described as \_\_\_\_\_\_.

4. (3 points) The molecular structure of caffeine is shown below. (The lower case letters **a-d** are simply labels to designate certain atoms.) Complete the dot formula by inserting all of the *lone pairs* that are not shown. State the hybridization at each of the atoms labelled **a** through **d** in the structure.



5. Consider the simple organic compound C<sub>2</sub>H<sub>3</sub>NO, whose skeletal framework is indicated by dotted lines in the figure below. The numbers on the structure are just meant to distinguish the carbon atoms in the questions below.

$$\begin{matrix} O & H \\ \vdots & \vdots \\ H & C & C & N & H \end{matrix}$$

- (a) (2 point) In the space above, complete the Lewis electron dot formula for C<sub>2</sub>H<sub>3</sub>NO.
- (b) (1 point) The O— $C^1$ — $C^2$  bond angle is *about* \_\_\_\_\_\_ degrees.
- (c) (1 point) The C<sup>2</sup>— N—H bond angle is *about* \_\_\_\_\_\_ degrees.
- (d) (7 points) **Describe the bonding** in  $C_2H_3NO$  using **Valence Bond concepts** (i.e., hybrid atomic orbitals, etc.). **Draw and clearly label one or more pictures** to show the **types of orbitals** that you are using to form the various  $\sigma$  and/or  $\pi$  bonds. Also clearly show the 3-D structure of the molecule, including the relative geometric arrangements around O,  $C^1$ ,  $C^2$ , and N.