	Chem 10113, Quiz 4							Name:													
	October 10, 2018						(Please Print)														
	IA																	VIIIA			
	(1)																	(18)			
1	I H	IIA											IIIA	IVA	VA	VIA	VIIA	2 He			
1	1.0080	(2)											(13)	(14)	(15)	(16)	(17)	4.0026			
	3	4											5	6	7	8	9	10			
2	Li 6.9410	Be 9.0122											B 10.811	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.179			
	11	12											13	14	15	16	17	18			
3	Na 22.990	Mg 24.305	IIIB (3)	IVB (4)	VB (5)	VIB (6)	VIIB (7)	(8)	. VIIIB . (9)	(10)	IB (11)	IIB (12)	Al 26.982	Si 28.086	P 30.974	S 32.066	Cl 35.453	Ar 39.948			
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36			
4	K 39.098	Ca 40.078	Sc 44.956	Ti 47.880	V 50.942	Cr 51.996	Mn 54.938	Fe 55.847	Co 58.933	Ni 58.690	Cu 63.546	Zn 65.380	Ga 69.723	Ge 72.610	As 74.922	Se 78.960	Br 79.904	Kr 83.800			
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54			
5	Rb 85.468	Sr 87.620	Y 88.906	Zr 91.224	Nb 92.906	Mo 95.940	Tc 98.907	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd 112.41	In 114.82	Sn 118.71	Sb 121.75	Te 127.60	I 126.90	Xe 131.29			
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86			
6	Cs 132.91	Ba 137.33	La 138.91	Hf 178.49	Ta 180.95	W 183.85	Re 186.21	Os 190.20	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.38	Pb 207.20	Bi 208.98	Po 208.98	At 209.99	Rn			
	87	88	89	104	105	100.00	100.21	100.20	102.22	100.00	100.01	200.00	20-7.00	207.20	200.00	200.00	200.00	222.02			
7	Fr 223.02	Ra 226.03	Ac 227.03	Unq 261.11	Unp 262.11	Unh 263.12	Uns 262.12														

- 1. (5 points) Write a *balanced chemical equation* for the process that occurs when each of the following substances are mixed with water. (*Note*: Use equilibrium arrows where appropriate.)
 - (a) Br_2O_5
 - (b) $C_2H_5NH_2$
 - (c) Rb₂O
 - (d) HOCN
- 2. (2 points) In Fe₂(Cr₂O₇)₃, the oxidation states are: Fe = _____ and Cr = _____.
- 3. (6 points) For each of the following, clearly write the *balanced*, <u>net ionic</u> equation. (Only the <u>net</u> <u>ionic</u> equation will be graded!) Use subscripts [(s), (aq), etc.] to indicate the phase of each compound or ion. If no reaction occurs, write No Rx.

(a)
$$(NH_4)_3BO_3(aq) + KOH(aq) \longrightarrow$$

(b) $HNO_{3(aq)} + (NH_{4})_{2}CO_{3(aq)} \longrightarrow$

(c)
$$Au(C_2H_3O_2)_{3(aq)} + (NH_4)_2S_{(aq)} \longrightarrow$$

4. (7 points) SHOW ALL WORK. Dimethylsulfoxide (DMSO) is a liquid organosulfur compound, (CH₃)₂SO (molar mass = 78.13), that is used in veterinary medicine as a liniment for horses but can be harmful to humans. DMSO has a density of 1.10 g/mL and it is completely miscible with water. In a simple lab experiment, 27.0 g of ice (i.e., solid H₂O) at 0.0 °C was added to 0.300 L of DMSO at 27.5 °C in a well-insulated container. After stirring for some time, all of the ice had melted and the final temperature of the water-DMSO mixture was 11.6 °C. Determine the *molar heat capacity* of DMSO in J/mole.°C. (*Note*: The heat of fusion of H₂O is 6.00 kJ/mole.)

5. (6 points) SHOW ALL WORK. Given the thermochemical equation,

 $2 \text{ N}_2 \text{O}_{(g)} + 2 \text{ H}_2 \text{O}_{(g)} \longrightarrow \text{ N}_2 \text{H}_{4(1)} + \text{ N}_2 \text{O}_{4(g)} \qquad \Delta \text{H}^\circ = 382.1 \text{ kJ}$ and the following standard heats of formation (ΔH°_f), $\frac{\text{compound}}{\Delta \text{H}^\circ_f(\text{kJ/mole}) - 241.8} \qquad 81.6 \qquad 11.1$

determine the standard heat of formation (ΔH°_{f}) of N₂H₄₍₁₎ in kJ/mole.