Chem 10113, Quiz 3

October 9, 2019

Name: ______(Please Print)

0010001), 201)													`					
	IA																	VIIIA
	(1)																	(18)
	1																	2
1	H	IIA											IIIA	IVA	VA	VIA	VIIA	Не
	1.0080	(2)	ı										(13)	(14)	(15)	(16)	(17)	4.0026
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	6.9410	9.0122											10.811	12.011	14.007	15.999	18.998	20.179
	11	12											13	14	15	16	17	18
3	Na	Mg	IIIB	IVB	VB	VIB	VIIB		. VIIIB .		IB	IIB	Al	Si	P	S	Cl	Ar
	22.990	24.305	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	26.982		30.974	32.066	35.453	39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098	40.078	44.956	47.880	50.942	51.996		55.847	58.933				69.723	72.610	74.922	78.960	79.904	83.800
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
			_		92.906		98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.20	192.22	195.09	196.97	200.59	204.38	207.20		208.98	209.99	222.02
	87	88	89	104	105	106	107											
7	Fr	Ra	Ac	Unq	Unp	Unh	Uns											
,	223.02	226.03	227.03	261.11	262.11	263.12	262.12											
	223.02	226.03	227.03	261.11	262.11	263.12	262.12											

- 1. (2 points) Write a complete, *balanced chemical equation* to show how hydroxyl<u>amine</u>, HONH₂, behaves when dissolved in water. (Remember that chemists are precise in their use of arrows!)
- 2. (9 points) For each of the following reactions, write *balanced chemical equations* for both the *molecular* and the *net ionic* equations. If no reaction occurs, write No Reaction. Use subscripts [(s), (aq), (g), etc.] to indicate the phase of each compound or ion.

(a)
$$(NH_4)_2SO_{3(aq)} + KOH_{(aq)} \longrightarrow molecular$$
:

net ionic:

(b)
$$HC_2H_3O_{2(aq)} + Ca(OH)_{2(aq)} \longrightarrow molecular$$
:

net ionic:

(c)
$$CrCl_{3(aq)} + Hg_2(NO_3)_{2(aq)} \longrightarrow molecular$$
:

net ionic:

3.	(5 points) SHOW ALL WORK. A sample of helium passes through a certain membrane in 75 sec. The same amount of an unknown noble gas requires 343 sec to pass through the same membrane. Identify the unknown gas by performing an appropriate calculation. The major concept related to this problem is known as Graham's Law of
4.	(2 points) Write the oxidation number of each atom in (NH ₄) ₃ SbO ₃ .
	N
5.	(2 points) BaO is the anhydride of The anhydride of HBrO ₄ is
6.	(5 points) SHOW ALL WORK. Automobile air bags inflate when a serious impact triggers the following chemical reaction. If the air bag has a volume of 24.5 L, determine the mass (in grams) of sodium azide that is required to inflate the bag to a pressure of 1250 torr at 23 °C. (molar masses: NaN ₃ = 65.0, N ₂ = 28.0, Na = 23.0)
	$2 \text{ NaN}_{3(s)} \longrightarrow 2 \text{ Na}_{(s)} + 3 \text{ N}_{2(g)}$