Chem 10113, Quiz 1

Answer Key

August 29, 2018

Pay attention to significant figures in all calculations!

	IA (1)																	VIIIA (18)
	1																	2
1	H 1.0080	IIA (2)											IIIA (13)	IVA (14)	VA (15)	VIA (16)	VIIA (17)	He 4.0026
	3	4											5	6	7	8	9	10
2	Li 6.9410	Be 9.0122											B 10.811	C 12.011	N 14.007	O 15.999	F 18.998	Ne 20.179
	11	12											13	14	15	16	17	18
3	Na 22.990	Mg 24.305	IIIB (3)	IVB (4)	VB (5)	VIB (6)	VIIB (7)	(8)	. VIIIB . (9)	 (10)	. IB (11)	IIB (12)	Al 26.982	Si 28.086	P 30.974	S 32.066	Cl 35.453	Ar 39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K 39.098	Ca 40.078	Sc 44.956	Ti 47.880	V 50.942	Cr 51.996	Mn 54.938	Fe 55.847	Co 58.933	Ni 58.690	Cu 63.546	Zn 65.380	Ga 69.723	Ge 72.610	As 74.922	Se 78.960	Br 79.904	Kr 83.800
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb 85.468	Sr 87.620	Y 88.906	Zr 91.224	Nb 92.906	Mo 95.940	Tc 98.907	Ru 101.07	Rh 102.91	Pd 106.42	Ag 107.87	Cd	In 114.82	Sn 118.71	Sb 121.75	Te 127.60	I 126.90	Xe 131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs 132.91	Ba 137.33	La 138.91	Hf 178.49	Ta 180.95	W 183.85	Re 186.21	Os 190.20	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.59	Tl 204.38	Pb 207.20	Bi 208.98	Po 208.98	At 209.99	Rn 222.02
	87	88	89	104	105	106	107											_
7	Fr 223.02	Ra 226.03	Ac 227.03	Unq 261.11	Unp 262.11	Unh 263.12	Uns 262.12											

1. (6 points) **SHOW ALL WORK.** An atom of cesium (Cs) has a radius of 256 pm (*pico*meter). Imagine a string of individual Cs atoms laid edge to edge in a straight line like a row of golf balls. Determine the length (in inches) of a line of Cs atoms that could be made from a 75.0 fg (*femto*gram) sample of pure cesium. (*Note*: You must use the *mole concept* correctly in order to receive any credit for this problem.)

$$(75.0 \times 10^{-15} \text{ g}) (1 \text{ mole} / 132.91 \text{ g}) (6.022 \times 10^{23} \text{ atoms / mole}) = 3.398 \times 10^8 \text{ atoms}$$

diameter of 1 atom = 2 (256 pm) = 512 pm
 $(3.398 \times 10^8 \text{ atoms}) (512 \text{ pm / atom}) (10^{-12} \text{ m / pm}) (1 \text{ cm / } 10^{-2} \text{ m}) (1 \text{ in / } 2.54 \text{ cm})$
= 6.85 in

2. (3 points) Complete the following calculation (assume all values are measured quantities). Write the answer in proper *scientific notation*, rounded to the *correct number of significant figures*.

$$\frac{(6.07325 \times 10^{11}) (54.790 - 6.582)}{(0.87 + 3.531)^2 (7.1738 \times 10^{-4})} = 2.11 \times 10^{15}$$

3. (3 points) **SHOW ALL WORK.** The ratio of fluorine to antimony by mass in SbF₃ is 0.332:1.00. Determine the formula of another fluoride of antimony in which the mass ratio of fluorine to antimony is 0.553:1.00. This data illustrates Dalton's Law of Multiple Proportions.

Compare mass F to mass Sb ratio in the two compounds:

$$0.553 / 0.332 = 1.67 = 5/3$$
 (ratio of integers as per Dalton's Law)

Thus, the 2nd compound has 5/3 times more F per Sb than the 1st compound.

- ∴ the 2nd compound is SbF₅
- 4. (6 points) **SHOW ALL WORK.** Aerogels are the most porous, lightest, solid materials known. A certain aerogel has a specific gravity of 0.00195. Determine the mass in pounds (lb) of an SUV size block of this aerogel that has a volume of 524 ft³.

```
density = 0.00195 \text{ g/cm}^3 (524 ft<sup>3</sup>) (12 in/ft)<sup>3</sup> (2.54 cm/in)<sup>3</sup> (0.00195 g/cm<sup>3</sup>) (1 lb / 454 g) = 63.7 lb
```

- 5. The element copper (Cu) has two naturally occurring isotopes: ⁶³Cu and ⁶⁵Cu. The isotope ⁶³Cu has a mass of 62.9296 amu and a natural abundance of 69.17 %.
 - (a) (2 points) One atom of $^{65}\text{Cu}^{2+}$ contains 29 protons, 36 neutrons, and 27 electrons.
 - (b) (5 points) SHOW ALL WORK. Determine the mass of the 65 Cu isotope in amu.

```
abundance of ^{65}Cu = 100 - 69.17 = 30.83 %  (0.6917) \text{ (mass of } ^{63}\text{Cu)} + (0.3083) \text{ (mass of } ^{65}\text{Cu)} = \text{Cu atomic mass}   (0.6917) (62.9296) + (0.3083) \text{ (mass of } ^{65}\text{Cu)} = 63.546 \text{ amu}   \text{mass of } ^{65}\text{Cu} = 64.93 \text{ amu}
```