Chem 10113, Exam 3

Answer Key

November 28, 2018

- 1. (8 points) Write *complete Lewis electron dot formulas* for each of the following ions.
 - (a) HON_2^+ (skeletal structure: H–O–N–N)

 $\left[H - \overset{\odot}{\overset{\oplus}{\underset{\scriptstyle \square}{\overset{\scriptstyle \oplus}{\scriptstyle \square}}} N \overset{\odot}{\underset{\scriptstyle \square}{\overset{\scriptstyle \square}{\scriptstyle \square}}} N :\right]^+$

(b) O₂NO⁻ (skeletal structure: O–O–N–O)

2. The simple organic compound, C₃H₂O, known as propynal, is very unstable but has been detected in interstellar space. Propynal has a skeletal framework as indicated in the figure below. The numbers on the figure are just labels to distinguish the carbon atoms in the following questions.

$$H - C^{1} - C^{2} - C^{3} - H$$

$$H - C - C = C - H$$

- (a) (1 point) The *total* number of *valence* electrons in this molecule is 20.
- (b) (2 points) In the space above, complete the Lewis electron dot formula for C_3H_2O .
- (c) (2 points) What is the hybridization at each of the atoms? O sp^2 C¹ sp² C² sp C³ sp
- (d) (1 point) The H— C^1 — C^2 bond angle is 120 degrees.
- (e) (1 point) The C²—C³—H bond angle is 180 degrees.
- (f) (7 points) **Describe the bonding** in propynal, C₃H₂O, using **Valence Bond Theory** (i.e., hybrid atomic orbitals, etc.). *Draw and clearly label one or more pictures* to show the *types of orbitals* that you are using to form the σ and/or π bonds. Also, clearly show the 3-D structure of the molecule, including the relative orientation of the C-H, C-C-C, and C-O linkages, etc.

3. (6 points) Consider the following organic liquids. Use the letters, **A** - **E** to fill in the blanks in the statements below. (The same letter may be used more than once.)

- (a) **B** has the greatest surface tension.
- (b) **C** should be the least soluble in water.
- (c) **B** has the lowest vapor pressure at room temperature.
- (d) **C** has only London (dispersion) forces.
- (e) In compounds A and D, the *predominant* (i.e., strongest) intermolecular interactions are *dipole-dipole forces*.
- 4. (3 points) Arrange the following in order of decreasing atomic radius. Te²⁻ Xe Ba²⁺ Cs⁺ I⁻ Te²⁻ > I⁻ > Xe > Cs⁺ > Ba²⁺ (smallest)
- 5. (6 points) The following questions refer to the phase diagram of elemental iodine (I₂) as shown below (not drawn to scale).
 - (a) At 200 °C and 0.20 atm is I₂ a solid, liquid, or a gas? gas
 - (b) The triple point of I_2 is at P = 0.12 atm and T = 114 °C.
 - (c) Which letter on the diagram indicates the critical point of I₂? H
 - (d) At 380 torr, I₂ boils at 156 °C.
 - (e) Which letter on the diagram best represents a sublimation point? A

- 6. (2 points) For a certain substance, a plot of ln P (natural log of vapor pressure, in atm) vs 1/T (1 over temperature, in K) affords a straight line with slope = -3675 K.
 For this substance, ΔH_{vaporization} = 30.6 kJ/mole.
- 7. (2 points) Write the *short-hand* electron configuration for rhodium (Rh).

[Kr]³⁶ 5s² 4d⁷

8. (3 points) Give the *orbital diagram* for the *valence shell* electron configuration of Rh^{3+} .

- 9. (3 points) Circle any of the following molecules that are *non-polar*. PF₃ XeF₄ BrF₅ BF₃ SF₂ AsF₅

- 11. (11 points) Use *Molecular Orbital Theory* as it applies to simple diatomic molecules and ions to answer the following questions.
 - (a) Circle any of the following molecules that are paramagnetic.

 $Li_2 \quad B_2 \quad C_2 \quad N_2 \quad O_2 \quad F_2$

- (b) The molecule NO has one unpaired electron(s) in the π^*_{2D} energy level.
- (c) The bond order of the anion NO⁻ is 2.
- (d) Which has the shortest bond distance? (circle one) $O_2 = O_2^+ = O_2^- = O_2^{2-1}$
- (e) Sketch the *shapes* of each of the following molecular orbitals.

(9 points) SHOW ALL WORK. The heat of combustion of propane, C₃H₈ (molar mass = 44.1), is -2220 kJ/mole. Determine the mass (in grams) of propane that is required to provide enough energy to convert 2.50 kg of ice at 273 K to water vapor at 373 K.

(*Note*: For H₂O, $\Delta H^{\circ}_{\text{fusion}} = 6.02 \text{ kJ/mole}$ and $\Delta H^{\circ}_{\text{vaporization}} = 40.7 \text{ kJ/mole}$)

moles $H_2O = (2500 \text{ g}) (1 \text{ mole} / 18.0 \text{ g}) = 138.9 \text{ mole}$ heat to melt ice = (138.9 mole) (6.02 kJ/mole) = 836.1 kJ heat to warm up water = (2500 g) (4.184 J/g·°C) (100 °C) = 1046000 J = 1046 kJ heat to evaporate water = (138.9 mole) (40.7 kJ/mole) = 5653.2 kJ total heat = 836 kJ + 1046 kJ + 5653 kJ = 7535 kJ mass propane = (7535 kJ) (1 mole / 2220 kJ) (44.1 g/mole) = 150 g

13. (8 points) **SHOW ALL WORK.** Write a *balanced chemical equation* for the *formation reaction* of glycine (an amino acid, structure below), and then determine the *standard heat of formation* $(\Delta H^{\circ}f)$ of glycine from the bond energy data given below.

Bond Energy (kJ/mole)		$1/2 N_{0} + 2 C + 0$
H–H	436	$\begin{array}{c} 1/2 \text{ N}_2 + 2 \text{ C} + 4 \\ 0_2 + 5/2 \text{ H}_2 \end{array} \rightarrow \begin{array}{c} H_2 \text{N} - \text{C} H_2 - \text{C} - \text{O} H \end{array}$
N–H	389	
O–H	464	
С–Н	414	bonds broken = 1/2 N≡N + O=O + 5/2 H-H
С–С	347	= 1/2 (946) + 498 + 5/2 (436) = 2061
C–N	305	bonds formed = 2 N-H + 2 C-H + 1 C-N + 1 C-C
C–O	360	+ 1 C=O + 1 C-O + 1 O-H
C=O	736	= 2 (389) + 2 (414) + 305 + 347
N≡N	946	+ 736 + 360 + 464 = 3818
O=O	498	∆H° _f = 2061 - 3818 = - 1757 kJ/mole

14. (9 points) SHOW ALL WORK. The vapor pressure of CCl₃F (molar mass = 137.4) at 300 K is 856 torr. If a 12.0 g quantity of CCl₃F is enclosed in a 1.25 L container, determine the mass of CCl₃F that is in the *liquid phase* after the liquid-gas equilibrium is established.

n = moles CCI₃F in gas phase = PV/RT = (856/760) atm (1.25 L) / (0.0821 L·atm/mole·K) (300 K) = 0.0572 mole (0.0572 mole) (137.4 g/mole) = 7.85 g CCI₃F gas moles CCI₃F liquid = 12.0 g total - 7.85 g CCI₃F gas = 4.15 g

15. (9 points) Apply **VSEPR** concepts to the following anions. In each case, <u>draw</u> a clear 3-D structure and give a description of the shape (i.e., tetrahedral, trigonal planer, etc.). Also, state the *hybridization* of the central atom in each case. (Do NOT draw orbital pictures!)

16. (4 points) The rather unusual anion BrF_6 contains six Br-F bonds but its 3-D shape is **not** octahedral. Apply the VSEPR concept to this anion (*extend* the basic premise of the theory as needed) and predict the most likely 3-dimensional structure for it. Clearly draw your proposed 3-D structure and indicate the expected bond angle(s) in degrees.

This anion has a steric number of 7 at the central Br atom. The electron geometry is a "pentagonal bipyramid" with one axial fluorine (labeled F^a), an axial lone pair, and five "equatorial" fluorines arranged in a pentagon perpendicular to the axial direction. The axial-equatorial angle is 90° and the equatorial-equatorial angle is 72° (i.e., 360°/5). This can be viewed as an "extension" of the SN 5 and 6 cases that have 3 and 4 positions in the horizontal plane, respectively. This structure has 5. (Incidentally, the hybridization at bromine is sp³d³.)

