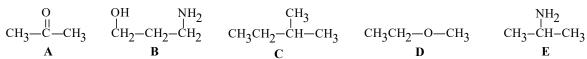
| Chem | 10113, | Exam | 3 |
|------|--------|------|---|
|------|--------|------|---|

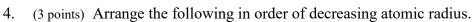
November 28, 2018

Name: \_\_\_\_\_(Please Print)

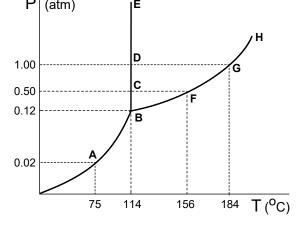
- 1. (8 points) Write complete Lewis electron dot formulas for each of the following ions.
  - (a) HON2<sup>+</sup> (skeletal structure: H-O-N-N)
  - (b) O<sub>2</sub>NO (skeletal structure: O-O-N-O)
- 2. The simple organic compound, C<sub>3</sub>H<sub>2</sub>O, known as propynal, is very unstable but has been detected in interstellar space. Propynal has a skeletal framework as indicated in the figure below. The numbers on the figure are just labels to distinguish the carbon atoms in the following questions.


$$H - C^{-1} - C^{-2} - C^{-3} + H$$

- (a) (1 point) The *total* number of *valence* electrons in this molecule is \_\_\_\_\_\_.
- (b) (2 points) In the space above, complete the Lewis electron dot formula for C<sub>3</sub>H<sub>2</sub>O.
- (c) (2 points) What is the hybridization at each of the atoms?


| O | $C^1$ | $C^2$ | $C^3$ |
|---|-------|-------|-------|
|   |       |       |       |

- (d) (1 point) The H— $C^1$ — $C^2$  bond angle is \_\_\_\_\_\_ degrees.
- (e) (1 point) The  $C^2$ — $C^3$ —H bond angle is \_\_\_\_\_\_ degrees.
- (f) (7 points) **Describe the bonding** in propynal, C<sub>3</sub>H<sub>2</sub>O, using **Valence Bond Theory** (i.e., hybrid atomic orbitals, etc.). **Draw and clearly label one or more pictures** to show the **types of orbitals** that you are using to form the  $\sigma$  and/or  $\pi$  bonds. Also, clearly show the 3-D structure of the molecule, including the relative orientation of the C-H, C-C-C, and C-O linkages, etc.


| 3. | (6 points) | Consider  | the fol | llowing   | organic  | liquids. | Use th   | e letters, | <b>A</b> - | - E to | fill ir | the | blanks | in the |
|----|------------|-----------|---------|-----------|----------|----------|----------|------------|------------|--------|---------|-----|--------|--------|
|    | statemen   | ts below. | (The sa | ame lette | er may b | e used m | ore that | n once.)   |            |        |         |     |        |        |



- (a) \_\_\_\_\_ has the greatest surface tension.
- (b) \_\_\_\_\_ should be the least soluble in water.
- (c) \_\_\_\_\_ has the lowest vapor pressure at room temperature.
- (d) \_\_\_\_\_ has only London (dispersion) forces.
- (e) In compounds \_\_\_\_\_ and \_\_\_\_, the *predominant* (i.e., strongest) intermolecular interactions are *dipole-dipole forces*.



- 5. (6 points) The following questions refer to the phase diagram of elemental iodine (I<sub>2</sub>) as shown below (not drawn to scale).
  - (a) At 200 °C and 0.20 atm is  $I_2$  a solid, liquid, or a gas?
  - (b) The triple point of  $I_2$  is at P =\_\_\_\_ atm and T =  $^{\circ}C$ .
  - (c) Which letter on the diagram indicates the critical point of I<sub>2</sub>?
  - (d) At 380 torr, I<sub>2</sub> boils at \_\_\_\_\_ °C.
  - (e) Which letter on the diagram best represents a sublimation point?



6. (2 points) For a certain substance, a plot of ln P (natural log of vapor pressure, in atm) vs 1/T (1 over temperature, in K) affords a straight line with slope = -3675 K.

For this substance,  $\Delta H_{\text{vaporization}} =$ \_\_\_\_\_kJ/mole.

- 7. (2 points) Write the *short-hand* electron configuration for rhodium (Rh).
- 8. (3 points) Give the *orbital diagram* for the *valence shell* electron configuration of Rh<sup>3+</sup>.
- 9. (3 points) Circle any of the following molecules that are *non-polar*.

PF<sub>3</sub>

XeF<sub>4</sub>

BrF5

BF<sub>3</sub>

SF<sub>2</sub>

AsF5

10. (3 points) Using Lewis dot symbols, illustrate the reaction of potassium and sulfur atoms to form a stable *ionic* compound.

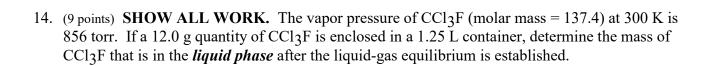
- 11. (11 points) Use *Molecular Orbital Theory* as it applies to simple diatomic molecules and ions to answer the following questions.
  - (a) Circle any of the following molecules that are paramagnetic.

 $Li_2$   $B_2$   $C_2$   $N_2$   $O_2$   $F_2$ 

- (b) The molecule NO has \_\_\_\_\_ unpaired electron(s) in the \_\_\_\_ energy level.
- (c) The bond order of the anion NO is \_\_\_\_\_.
- (d) Which has the shortest bond distance? (circle one)  $O_2$   $O_2^+$   $O_2^ O_2^{2-}$
- (e) Sketch the *shapes* of each of the following molecular orbitals.

 $\pi^*_{2p}$   $\sigma^*_{2s}$ 

12. (9 points) **SHOW ALL WORK.** The heat of combustion of propane, C<sub>3</sub>H<sub>8</sub> (molar mass = 44.1), is -2220 kJ/mole. Determine the mass (in grams) of propane that is required to provide enough energy to convert 2.50 kg of ice at 273 K to water vapor at 373 K.


(*Note*: For H<sub>2</sub>O,  $\Delta H^{\circ}_{fusion} = 6.02 \text{ kJ/mole}$  and  $\Delta H^{\circ}_{vaporization} = 40.7 \text{ kJ/mole}$ )

13. (8 points) **SHOW ALL WORK.** Write a *balanced chemical equation* for the *formation reaction* of glycine (an amino acid, structure below), and then determine the *standard heat of formation* (ΔH°<sub>f</sub>) of glycine from the bond energy data given below.

Bond Energy (kJ/mole)

H<sub>2</sub>N-CH<sub>2</sub>-C-OH

| Bond Energ   | gy (kJ/mole) |
|--------------|--------------|
| Н–Н          | 436          |
| N-H          | 389          |
| О–Н          | 464          |
| С-Н          | 414          |
| C-C          | 347          |
| C-N          | 305          |
| C-O          | 360          |
| C=O          | 736          |
| $N \equiv N$ | 946          |
| O=O          | 498          |



15. (9 points) Apply **VSEPR** concepts to the following anions. In each case, <u>draw</u> a clear 3-D structure and give a description of the shape (i.e., tetrahedral, trigonal planer, etc.). Also, state the **hybridization** of the central atom in each case. (**Do NOT draw orbital pictures!**)

 $XeO_3^2$ -  $Br_3$   $GeF_3$ 

16. (4 points) The rather unusual anion BrF<sub>6</sub> contains six Br-F bonds but its 3-D shape is **not** octahedral. Apply the VSEPR concept to this anion (**extend** the basic premise of the theory as needed) and predict the most likely 3-dimensional structure for it. Clearly draw your proposed 3-D structure and indicate the expected bond angle(s) in degrees.