Chem 10113, Exam 1

September 19, 2018

Name: _______(Please Print)

1. (7 points) SHOW ALL WORK. The density of a solution of H₂SO₄ in water is 1.26 g/mL. The solution is 30.0 % H₂SO₄ (by mass). Determine the molarity of the H₂SO₄ solution. (molar masses: $H_2SO_4 = 98.1$, $H_2O = 18.0$)

2. (5 points) Balance the following chemical equations.

(a)	N ₂ O ₅	+	$\H_2 \longrightarrow$	NH3 +	O2
(b)	Si ₃ N ₄	+	$\H_2O \longrightarrow$	SiO_2 +	NH3

Most metals react with acids to produce a metal salt and H₂ gas. In a simple lab experiment, when 3. 35.0 g Al was added to 1.60 L of 2.50 M HNO₃, the chemist was able to isolate 3.70 g of pure H₂.

 $2 \operatorname{Al}_{(s)} + 6 \operatorname{HNO}_{3(aq)} \longrightarrow 2 \operatorname{Al}(\operatorname{NO}_{3})_{3(aq)} + 3 \operatorname{H}_{2(g)}$

(a) (10 points) SHOW ALL WORK. Determine the percentage yield of the reaction.

(b) (7 points) SHOW ALL WORK. Determine the molarity of HNO3 in solution after the above experiment is completed.

4. (10 points) SHOW ALL WORK. A mixture of CH_4 and C_5H_{12} has a mass of 24.0 g. It is burned completely in excess O_2 to form a mixture of CO_2 and H_2O . The product mixture contains 1.50 times as many moles of H_2O as of CO_2 . Determine the mass of CH_4 in the original mixture. (*Hint*: Write the *two* combustion reactions and *think moles* as well as grams! Use the approximate molar masses, $CH_4 = 16$ and $C_5H_{12} = 72$, to simplify the math.)

- 5. (3 points) Write the complete symbol of the specific *atom or ion* that has 36 electrons, 42 neutrons, and a mass number of 75.
- 6. (4 points) Circle any of the following that are *ionic compounds*. BrCl₃ $Sn(S_2O_3)_2$ HI SeF₄ XeO₃ NH₄IO₃ Li₂O₂ PbS₂

7. (8 points) Complete the following statements for the substance C₂B₈H₈. (Work need not be shown!) This substance has a molar mass of ______ g/mole and is ______% boron by mass. The *empirical formula* of this substance is ______. The number of *boron atoms* in 0.50 mole of C₂B₈H₈ is ______.

8. (7 points) For the following organic molecules, write the appropriate family name (i.e., alkane, alcohol, etc.) below each one.

CH ₃ CH=CHCH ₃	$\mathrm{CH}_3\mathrm{CH}_2\mathrm{N}(\mathrm{CH}_3)_2$	H ₂ C ^{CH₂O CH-C^{''}}
О Н Ш \.CH2		H ₂ C _{CH2} OCH ₃
H ^C CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ C	H ₂ OCH ₃

- 9. Write a *complete, balanced chemical equation* for each of the following processes.
 - (a) (2 points) The addition of hydrogen iodide gas to water.
 - (b) (3 points) The preparation of barium nitrate by a *neutralization* reaction.

10. (19)	oints) Write the	chemical formula	for each of the	following compound	s.
----------	------------------	------------------	-----------------	--------------------	----

Name	Formula
butane	
rubidium oxalate	
triantimony heptasulfide	
potassium hydrogen tellurate	
aluminum acetate	
hypoiodous acid	
cobalt(II) phosphate octahydrate	
calcium peroxide	
sodium thiocyanate	
magnesium nitride	

11. (7 points) **SHOW ALL WORK.** An aluminum-containing compound has the formula Al_xS_yO₉ and is 36.9 % oxygen by mass. Determine x and y.

12. (8 points) **SHOW ALL WORK.** Determine the number of sulfate ions in 10.0 aL of a dilute solution that is 1.50 x 10⁻⁵ M Fe₂(SO₄)₃. (Remembering the metric prefixes, you'll note that an *atto*liter (aL) is an extremely small volume.)